Abstract

In this study, we perform a thermal curve analysis with terahertz (THz) metamaterials to develop a label-free identification tool for pathogens such as bacteria and yeasts. The resonant frequency of the metasensor coated with a bacterial layer changes as a function of temperature; this provides a unique fingerprint specific to the individual microbial species without the use of fluorescent dyes and antibodies. Differential thermal curves obtained from the temperature-dependent resonance exhibit the peaks consistent with bacterial phases, such as growth, thermal inactivation, DNA denaturation, and cell wall destruction. In addition, we can distinguish gram-negative bacteria from gram-positive bacteria which show strong peaks in the temperature range of cell wall destruction. Finally, we perform THz melting curve analysis on the mixture of bacterial species in which the pathogenic bacteria are successfully distinguished from each other, which is essential for practical clinical and environmental applications such as in blood culture.

A label-free sensing method has been developed for identifying hazardous pathogens based on their intrinsic properties. This was possible by interrogating the temperature-dependent dielectric constant of the microbes in the far-infrared range.

Details

Title
Terahertz thermal curve analysis for label-free identification of pathogens
Author
Jun, S. W. 1 ; Ahn, Y. H. 1   VIAFID ORCID Logo 

 Ajou University, Department of Physics, Suwon, Korea (GRID:grid.251916.8) (ISNI:0000 0004 0532 3933); Ajou University, Department of Energy Systems Research, Suwon, Korea (GRID:grid.251916.8) (ISNI:0000 0004 0532 3933) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2677213977
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.