Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The study mainly aims at the potential of Argon Oxygen Decarburization Slag (AODS) as a supplementary cementitious material and explores the mechanisms of stabilization/solidification (S/S) of chromium in cement-based composite pastes. The basic cementitious parameters, such as water requirement, setting time, soundness, hydration characteristics, and strength indexes of composite binders, were examined through standard methods. The results showed that the most beneficial mineral phase in AODS for cementitious behavior was beta dicalcium silicate (β-C2S). The utilization of a higher AODS dosage in composite binders increased the water requirement and the setting time, while it decreased the hydration heat and the strength indexes. Although the AODS possessed limited cementitious properties, it conformed the Grade II steel slag powder qualified for concrete and cement. Sequential leaching tests were conducted targeting the leachability of chromium in the pastes with different AODS dosage and curing time. Results showed that with the lower AODS dosage and the longer curing time, the S/S efficiency for chromium leaching from the composite paste was better. Utilization of AODS as a cement substitute not only can recycle this solid waste and decrease the emission of CO2 concerning cement production, but also helps to effectively reduce the chromium leaching risk.

Details

Title
Cementitious Behavior of Argon Oxygen Decarburization Stainless Steel Slag and Its Stabilization on Chromium
Author
Ya-Jun, Wang 1   VIAFID ORCID Logo  ; Ya-Nan Zeng 2 ; Jun-Guo, Li 2 ; Yu-Zhu, Zhang 1 

 School of Materials and Metallurgy, Northeastern University, Shenyang 110819, China; [email protected] (Y.-J.W.); [email protected] (Y.-Z.Z.); School of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063009, China 
 School of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063009, China 
First page
876
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20734352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2677279434
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.