Full text

Turn on search term navigation

© 2022 Rahmandad et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

While much effort has gone into building predictive models of the COVID-19 pandemic, some have argued that early exponential growth combined with the stochastic nature of epidemics make the long-term prediction of contagion trajectories impossible. We conduct two complementary studies to assess model features supporting better long-term predictions. First, we leverage the diverse models contributing to the CDC repository of COVID-19 USA death projections to identify factors associated with prediction accuracy across different projection horizons. We find that better long-term predictions correlate with: (1) capturing the physics of transmission (instead of using black-box models); (2) projecting human behavioral reactions to an evolving pandemic; and (3) resetting state variables to account for randomness not captured in the model before starting projection. Second, we introduce a very simple model, SEIRb, that incorporates these features, and few other nuances, offers informative predictions for as far as 20-weeks ahead, with accuracy comparable with the best models in the CDC set. Key to the long-term predictive power of multi-wave COVID-19 trajectories is capturing behavioral responses endogenously: balancing feedbacks where the perceived risk of death continuously changes transmission rates through the adoption and relaxation of various Non-Pharmaceutical Interventions (NPIs).

Details

Title
Enhancing long-term forecasting: Learning from COVID-19 models
Author
Hazhir Rahmandad https://orcid.org/0000-0002-2784-9042; Ran Xu https://orcid.org/0000-0002-5832-9226; Navid Ghaffarzadegan https://orcid.org/0000-0003-3632-8588
First page
e1010100
Section
Research Article
Publication year
2022
Publication date
May 2022
Publisher
Public Library of Science
ISSN
1553734X
e-ISSN
15537358
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2677644885
Copyright
© 2022 Rahmandad et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.