It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Rehabilitation medicine is facing a new development phase thanks to a recent wave of rigorous clinical trials aimed at improving the scientific evidence of protocols. This phenomenon, combined with new trends in personalised medical therapies, is expected to change clinical practice dramatically. The emerging field of Rehabilomics is only possible if methodologies are based on biomedical data collection and analysis. In this framework, the objective of this work is to develop a systematic review of machine learning algorithms as solutions to predict motor functional recovery of post-stroke patients after treatment.
Methods
We conducted a comprehensive search of five electronic databases using the Patient, Intervention, Comparison and Outcome (PICO) format. We extracted health conditions, population characteristics, outcome assessed, the method for feature extraction and selection, the algorithm used, and the validation approach. The methodological quality of included studies was assessed using the prediction model risk of bias assessment tool (PROBAST). A qualitative description of the characteristics of the included studies as well as a narrative data synthesis was performed.
Results
A total of 19 primary studies were included. The predictors most frequently used belonged to the areas of demographic characteristics and stroke assessment through clinical examination. Regarding the methods, linear and logistic regressions were the most frequently used and cross-validation was the preferred validation approach.
Conclusions
We identified several methodological limitations: small sample sizes, a limited number of external validation approaches, and high heterogeneity among input and output variables. Although these elements prevented a quantitative comparison across models, we defined the most frequently used models given a specific outcome, providing useful indications for the application of more complex machine learning algorithms in rehabilitation medicine.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer