It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Glioblastoma (GBM) has a high incidence rate, invasive growth, and easy recurrence, and the current therapeutic effect is less than satisfying. Pyroptosis plays an important role in morbidity and progress of GBM. Meanwhile, the tumor microenvironment (TME) is involved in the progress and treatment tolerance of GBM. In the present study, we analyzed prognosis model, immunocyte infiltration characterization, and competing endogenous RNA (ceRNA) network of GBM on the basis of pyroptosis-related genes (PRGs).
Methods
The transcriptome and clinical data of 155 patients with GBM and 120 normal subjects were obtained from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx). Lasso (Least absolute shrinkage and selection operator) Cox expression analysis was used in predicting prognostic markers, and its predictive ability was tested using a nomogram. A prognostic risk score formula was constructed, and CIBERSORT, ssGSEA algorithm, Tumor IMmune Estimation Resource (TIMER), and TISIDB database were used in evaluating the immunocyte infiltration characterization and tumor immune response of differential risk samples. A ceRNA network was constructed with Starbase, mirtarbase, and lncbase, and the mechanism of this regulatory axis was explored using Gene Set Enrichment Analysis (GSEA).
Results
Five PRGs (CASP3, NLRP2, TP63, GZMB, and CASP9) were identified as the independent prognostic biomarkers of GBM. Prognostic risk score formula analysis showed that the low-risk group had obvious survival advantage compared with the high-risk group, and significant differences in immunocyte infiltration and immune related function score were found. In addition, a ceRNA network of messenger RNA (CASP3, TP63)–microRNA (hsa-miR-519c-5p)–long noncoding RNA (GABPB1-AS1) was established. GSEA analysis showed that the regulatory axis played a considerable role in the extracellular matrix (ECM) and immune inflammatory response.
Conclusions
Pyroptosis and TME-related independent prognostic markers were screened in this study, and a prognosis risk score formula was established for the first time according to the prognosis PRGs. TME immunocyte infiltration characterization and immune response were assessed using ssGSEA, CIBERSORT algorithm, TIMER, and TISIDB database. Besides a ceRNA network was built up. This study not only laid foundations for further exploring pyroptosis and TME in improving prognosis of GBM, but also provided a new idea for more effective guidance on clinical immunotherapy to patients and developing new immunotherapeutic drugs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer