This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
Stochastic response analysis is crucially significant for structural performance evaluation and probabilistic risk assessment [1–6]. Nevertheless, to get a structural realistic and accurate evaluation in practical engineering is always challenging due to the uncertainties that are generally considered primarily to be limited to stochastic excitation, in fact, the effect of uncertainty system parameters, which include structural property parameters (such as stiffness, mass, and intensity) and excitation characteristic parameters (such as spectrum and duration) on response evaluation that is equally important, even dominate [7–12]. Besides, it also makes evaluation difficult owing to these parameters that usually are mutually correlated in reality [13–16]. Thus, what the present study mainly attempts is to evaluate stochastic uncertainty response involving correlated random variables.
To evaluate structural stochastic uncertainty response, a lot of effort has been put into it by scholars and many celebrated works are able to be traced toward this topic. Generally, the uncertainty response evaluation can be classified into two categories: the time-domain analysis and the frequency-domain analysis [17–19]. In the frequency-domain analysis, the direct integration method and Monte Carlo simulation, two accurate evaluation methods, are adopted by some scholars in a linear single degree of freedom; however, when the dynamic system is complex or high safety, those methods are difficult to repeatedly apply on account of that plenty of complicated analysis, such as eigenvalue analysis, computation of participation factor, and solution of linear equations, which are necessary, especially nonlinear system [20, 21]. Additionally, the response surface method is also capable to be performed to evaluate the uncertainty response for avoiding the difficulties in the computation of derivatives; however, some studies found that accurate results yielded by this approximation method are mainly depending on the location of the fitting points [10, 15, 22]. Other scholars [23, 24] found the first-order approximate of mean response for uncertain linear systems, which is obtained by applying Taylor series expansion, which is coincident with the given result; thus, this mean solution is treated to equivalent uncertain stochastic response. However, other research studies [3, 10, 25] are realizing the greater the coefficient of variance, the greater the error between the mean and truth value of uncertainty response; therefore, the variance of response is taken into account for improving the mean result. In the time-domain analysis, their analysis procedure and conclusion of applying these methods mentioned above are fundamentally similar to the frequency domain except that the first two moments of the response are obtained by statistic counting all the response results, which are obtained by multiple time-dependent inputs acting on the structure [26].
In summary, no matter what domain is used, the uncertainty response expressions are capable to be approximated with respect to the mean values of parameter variables by utilizing Taylor series expansion [1, 2]. Nevertheless, the Taylor series expansion method is requiring sensitivity analyses of response, which involves several complex calculation procedures, such as eigenvalue analysis, the computation of participation factor and spectral moment, and inverse distribution function; besides, the result is also not ideal when this method has been applied in the nonlinear system; what’s more, the method only considers the influence of structural property parameters on the uncertain response under determinate multiple inputs; however, the effect of excitation characteristic parameters on the uncertainty response is equally significant [10, 25].
Specifically, Zhao et al. [10] propose a point estimation procedure (PEP), which is evaluating random response related to system uncertainty parameter by several repetitions of random response analysis under determination parameters, to directly evaluate the first two order moments of the structural maximum response distribution including uncertainty system parameters without any sensitivity analysis. The stochastic response of a 15-floor nonlinear structure, considering four structural property parameters and three characteristic parameters, in his paper, is steadily evaluated. What their result reveals is that PEP, a conceptually more straightforward and computationally effective method, can avoid the three main difficulties mentioned above form the series expansion method. However, in his paper, while applying the PEP, the system parameter variables are viewed as mutually independent ones. As a matter of fact, most of the system parameter variables, in actual engineering, are usually involving correlation [27, 28]. Therefore, prior to adopting the PEP, it is necessary to convert partially correlated system parameter variables into independent ones.
In response to this difficulty, in general, the Rosenblatt transformation is a classical method to implement the aforementioned correlated transformation process [29]; however, different results may be yielded if the integral order with respect to system parameters variables is exchanged; furthermore, the premise of this method applied is that the information for joint PDF of system parameter variables needs to remain completeness [30]. Thus, the Rosenblatt transformation, in a certain situation, is just an ideal method that is not easy to be implemented. On the other hand, if partial information about joint PDF of system parameter variables is capable to be acquired, the Nataf transformation, which just requires the marginal PDFs and correlation matrix of system parameter variables, is a useful alternative approach available to handle those variables related to correlation [16, 30–32]. Nevertheless, in engineering practice, both the methods above may not be achieved, if encountering the entire information for PDF of system parameter variables can scarcely be obtained except their statistical moments and correlation matrix. Under the circumstances, Lu et al. [33] recently provided a third-moment pseudo-correlation normal transformation, with the aid of the first three statistic moments (mean, standard deviation, and skewness) and correlation matrix of system parameter variables, for realizing the conversion process about correlated and non-normal system parameter variables with unknown joint PDF and marginal PDFs to mutual independent standard normal ones. However, at present, applying this effective transformation technique for evaluating stochastic uncertainty response involving correlated system parameter variables has not been investigated yet.
In this study, based on the studies above, the main objective is to extend the point estimation procedure based on a third-moment pseudo-correlation normal transformation for evaluating stochastic uncertainty response involving correlated system parameter variables. The remainder of this study is organized as follows: in Section 2, the statistical analytical expression of stochastic response evaluations with determination parameters is reviewed first; on this basis, stochastic response with independent system parameters can be evaluated utilizing the PEP. In Section 3, a third-moment pseudo-correlation normal transformation is introduced into PEP, for solving the correlated and non-normal system parameter variables to mutual independent and standard normal ones. In Section 4, the flowchart and main calculative procedure for evaluating stochastic response with uncertainty parameters are illustrated. It is then followed by Section 5, in which several examples, which involve the response uncertainty evaluation with correlated system parameter variables, are analyzed and discussed utilizing the presented approach. Eventually, the conclusions of this study are presented in Section 6.
2. Stochastic Response Evaluation with Uncertainty Parameters
To evaluate the structural uncertainty response, in general, is not easy on account of the structural stochastic response R(t) cannot be explicitly descripted. From another perspective, its maximum response value, i.e., Rmax, is a random variable; then, the structural uncertainty response can be conveniently evaluated on the condition that the statistical characteristic values of Rmax, several concrete analytical expressions, are able to be known.
2.1. Stochastic Response Evaluation under Deterministic Parameters
The PDF of maximum peak value for zero-mean normal stationary random process R(t), in time period T, does not exceed a certain threshold that is considered to approximately obey the Poisson distribution [34]. According to Davenport’s equation, its mean value and standard deviation can be obtained as follows:
In equations (1)–(3),
Equations (4)-(6) represent when the linear system is subjected to the stationary random excitation {x(t)}, whose power spectrum matrix is [Sxx(ω)]; then, the power spectrum matrix of system response {y(t)} can be expressed as [Syy(ω)], and its mutual power spectrum matrix is able to be expressed as [Syx(ω)] and [Sxy(ω)], respectively. [H(ω)] denotes the response matrix in the frequency domain. In addition, for a nonlinear single or multiple degrees of freedom system, the equivalent linearization method is recommended to calculate response standard deviation
2.2. Stochastic Response Evaluation under System Parameter Uncertainties
In the structural stochastic response evaluation described in the previous section, these system parameters, including structural property parameters and excitation characteristics parameters, are premised to be given. While these system parameters are considered to treat as a group of random variables X, then, the maximum uncertainty response of the structure, Rmax, can be described as a function of X:
Generally, the maximum response variable Rmax cannot be explicitly descripted by random vibration theory, except it is the mean μm and standard deviation σm. Therefore, this study’s primary aim is to evaluate structural uncertainty response by adopting the statistics of maximum response variable Rmax, i.e., equations (1)-(2).
While the uncertainty system parameters are described by random variables X, the expression of mean μm and standard deviation σm become a function about X, i.e., µm(X) and σm(X), respectively. For a group of determination values of X = x, the conditional mean and standard deviation of maximum response variables can be evaluated by directly substituting equations (1)-(2), i.e., µm(X = x) and σm(X = x). Subsequently, when system parameters X are considered as uncertainty random variables, the overall uncertainty response, i.e, mean µM and standard deviation σM, can be evaluated by integrating over the whole area of X. The entire evaluation procedure mentioned above is shown in the following equations.
In the first step, the conditional mean of maximum response µm(X) and its standard deviation σm(X) can be evaluated as follows [35]:
Subsequently, integrating over the whole area of system parameter variables X, the overall mean of maximum response µM and its standard deviation σM can be obtained [10]:
It is worth noting that the result of E[
As long as the results of E[µm(X)], E[
2.3. Point Estimation Procedure Based on Univariate Dimension Reduction Integration
In this section, the PEP can be conducted for evaluating stochastic uncertainty response. By observing equation (12), it can be found that the essence of assessing the uncertain stochastic response is to evaluate the expectation of R(X), in which X represents a set of arbitrary system parameter vectors.
In general, evaluating this expectation process based on PEP is capable to be divided into two steps [36, 37]: To begin with, in order to avoid a large number of calculations, the univariate dimension reduction integration is first performed for approximating conditional maximum response statistics R(X) as a series of sum functions, in which function R(X) just includes one random variable Xi as follows:
In the second place, the mean of conditional maximum response statistics R(X), i.e., overall maximum response statistics E[R(X)], can be evaluated by using direct PEP with regard to Ri in equation (14). It can be formulated as follows:
Table 1
Five-point estimate corresponding the estimating point and weight.
Estimation point | Weights | |
Five-point estimate | u0 = 0 | p0 = 0.53333 |
u1+ = −u1− = 1.35563 | p1+ = p1− = 0.22208 | |
u2+ = −u2− = 2.85697 | p2+ = p2− = 1.12574 × 10–2 |
Table 2
Seven-point estimate corresponding the estimating point and weight.
Estimation point | Weights | |
Seven-point estimate | u0 = 0 | p0 = 0.45714 |
u1+ = −u1− = 1.15441 | p1+ = p1− = 0.24012 | |
u2+ = −u2− = 2.36676 | p2+ = p2− = 0.03076 | |
u3+ = −u3− = 3.75044 | p3+ = p3− = 5.48269 × 10–4 |
3. The Third-Moment Pseudo-Correlation Normal Transformation for Correlated and Non-Normal Variables into Independent Normal Ones
In Section 2.3, while PEP is conducted, the system parameter variables X require to be treated as a set of mutually independent variables. However, in reality, most of these are regarded as correlated variables with unknown joint and marginal PDFs [13–16]. Thus, the third-moment pseudo-correlated normal transformation is introduced to resolve the difficulty procedure of transforming correlated variables into the mutually independent ones [33]. This transformation procedure mainly includes the following two steps.
3.1. The Third-Moment Transformation for Correlated Non-Normal System Parameter Variables into Correlated Standard Normal Ones
Without loss of generality, an arbitrary system parameter variable Xi is able to be standardized into Xis, whose mean and variance are 0 and 1, respectively. Meanwhile, according to third-moment transformation technology, Xis can be approximated by a second-order polynomial normal function. The whole process above can be expressed in the following equation [39, 40]:
For the sake of facilitating derivation and comprehension hereinafter, the equation (19) is rewritten so as to reflect the relationship between Xi and Ui as follows:
Observing the equation (20), the independent non-normal random variables Xi with unknown joint PDF and marginal PDFs, on the basis of the third-moment transformation, have been converted into the standard normal ones Ui.
3.2. The Cholesky Decomposition for Correlated Standard Normal System Parameter Variable into Independent Ones
According to third-moment transformation technology, i.e., equation (19), in view of the correlation effect between system parameter variables Xi and Xj, in which their correlative coefficient is ρij, then, their corresponding standardized variables Xis and Xjs, respectively, can be expressed as follows:
Let ρ0ij be the correlation coefficient between Zi and Zj, after to relevantly convert and derivate, ρ0ij and ρij are able to be determined as [33].
When obtained the equation (27), two correlated variables with known statistical moments and correlation coefficient can be converted into two correlated standard normal variables. Meanwhile, this procedure can be easily extended to n variables with known statistical moments and correlation matrix, and their equivalent correlation matrix of standard normal variables, Cz, can be summarized as follows:
After relevant transforming the equation (30), Zi can be formulated by substituting the equation (31) into equation (30) as follows:
Combining the equation (20), then, the correlated and non-normal system parameter variables Xi can be expressed by the independent standard normal ones Ui as follows:
Substituting this equation above into the expression of conditional maximum response statistics R(X), the expression comes from equation (14) in Section 2.3. Then, evaluating uncertainty stochastic response is able to be expressed as follows:
4. Point Estimation Procedure for Uncertainty Response Evaluation Involving Correlated System Parameter Variables Based on the Third-Moment Pseudo-Correlation Normal Transformation
Combining the PEP with the third-moment pseudo-correlation transformation, as those are described hereinabove, uncertainty evaluation of stochastic structural response involving correlated system parameter variables is capable to be readily conducted. The entire procedure is illustrated in Figure 1, and its corresponding explanatory items are able to be described as follows:
(1) The analytical expression is acquired for uncertainty evaluation of mean and standard deviation of maximum stochastic response, i.e., equations (1) and (2), involving correlated system parameter variables X with unknown joint PDF and marginal PDFs.
(2) The expressions of E[µm(X)], E[
(3) The expression of E[R(X)], in which X is a set of arbitrary system parameter vectors, is converted to the expression of E[R(U)], in which U is a group of mutually independent ones, based on the third-moment pseudo-correlation normal transformation.
(4) Conditional maximum response statistics R(U) are approximated as a series of sum functions, in which these functions just include one standard normal random variable Ui, based on the univariate dimension reduction integration.
(5) The ultimate overall maximum response statistics E[R(X)] are obtained, i.e., the mean of conditional statistics of maximum response R(X), by directly utilizing PEP.
[figure(s) omitted; refer to PDF]
5. Numerical Examples and Investigations
To verify the simplicity, efficiency, and accuracy of the proposed method for uncertainty evaluation of stochastic response involving correlated system parameter variables, two numerical cases are presented. In example 1, a nonlinear single degree of freedom system, with known marginal PDF and correlation matrix of system parameter variables, subject to Gaussian white noise excitation is investigated, and their evaluation process of uncertainty response involving two correlated parameters by the presented method is illustrated step by step; in example 2, the third-moment pseudo-correlation normal transformation for a two degree of freedom linear simply isolated bridge, just known the first three moments of system parameter variables instead of joint PDF and marginal PDF, taking into account uncertainties of three correlated structural property parameters and two correlated excitation characteristic parameters, subjected to dynamic excitation, is first applied, and then, the effects of correlation and uncertainties are evaluated and discussed in detail. In these examples, a comparative analysis and discussion are, respectively, conducted between given parameter variables and uncertainty ones, and correlated parameter variables and independent ones. Meanwhile, MCS, a supplement approach, is used to investigate the accuracy of the presented method.
5.1. Example 1: A Nonlinear SDOF Subject to Gaussian White Noise Excitation
Considering an example of a nonlinear SDOF system under dynamic excitation, the excitation is modeled as Gaussian white noise, in which its intensity S0, the duration T, the natural frequency f, and damping ratio ξ are uncertain. Their probability models are known as marginal PDFs as shown in Table 3. Assuming that the correlation coefficient between the intensity S0 and the duration T is 0.3, the remaining variables are mutually independent.
Table 3
Marginal PDFs and correlation matrix of system parameter variables.
Parameter | Distribution | Mean | COV | Skewness | Correlation matrix |
T | Lognormal | 10 s | 0.3 | 0.93 | |
S0 | Type II extreme value | 0.65 dm2/s3 | 0.6 | 1.14 | |
ξ | Lognormal | 0.03 | 0.3 | 0.93 | |
f | Normal | 2 Hz | 0.2 | 0 |
5.1.1. Response Evaluation under Determination Parameters
When system uncertainty just is considered to be limited to stochastic excitation, to evaluate the uncertainty response is needed to substitute the means of these parameter variables into equations (1)-(2), respectively; then, the response evaluation results under given parameters can be obtained as equations (35)-(36). Noting
Supposing nonlinearity coefficient ε is taken as 0.01; equation (37) is substituted into equations (35) and (36), respectively; then, the mean and standard deviation of maximum response, under the given parameter, are obtained as follows: μMdet = 4.602 × 10−2 and σMdet = 8.986 × 10−3.
5.1.2. Response Evaluation with Uncertainty Independent Parameters
When uncertainties in system parameters S0, f, ξ, and T are considered, on condition that they will be treated as mutually independent random variables, then, the overall mean of the maximum response analytical expression, μΜ, can be expressed as follows:
Univariate dimension reduction integration can be directly used for equation (39); then, the conditional mean of maximum response µm(X) can be expressed as follows:
In this example, a five-point estimation in standard normal space is selected as given in Table 1. For mutually independent system parameters, corresponding coordinates of estimation point
Table 4
Five estimation point coordinates in original space for example 1.
Parameter variables | The original coordinates corresponding to five estimated points | ||||
X2− | X1− | X0 | X1+ | X2+ | |
T | 4.140 | 6.434 | 9.578 | 1.426×101 | 2.216 × 101 |
S0 | 2.804 × 10−1 | 3.741 × 10−1 | 5.553 × 10−1 | 1.039 | 3.349 |
ξ | 1.242 × 10−2 | 1.930 × 10−2 | 2.873 × 10−2 | 4.278 × 10−2 | 6.665 × 10−2 |
f | 8.572 × 10−1 | 1.458 | 2.000 | 2.542 | 3.142 |
Substituting the estimation point coordinates in original space from Table 4 and its weight (see Table 1) into the (17), the evaluated result of univariate conditional mean response µmi(X) and its result from the corresponding five estimation points can be obtained in Table 5.
Table 5
Estimation results for μmi(X) in original space.
Parameter variables | μmi | The estimation results corresponding to five estimated points | ||||
X2+ | X1+ | X0 | X1+ | X2+ | ||
T | 4.571 × 10−2 | 4.001 × 10−2 | 4.315 × 10−2 | 4.575 × 10−2 | 4.822 × 10−2 | 5.082 × 10−2 |
S0 | 4.601 × 10−2 | 1.985 × 10−2 | 2.649 × 10−2 | 3.918 × 10−2 | 7.358 × 10−2 | 2.371 × 10−1 |
ξ | 5.017 × 10−2 | 1.111 × 10−1 | 7.153 × 10−2 | 4.799 × 10−2 | 3.228 × 10−2 | 2.077 × 10−2 |
f | 6.081 × 10−2 | 5.118 × 10−1 | 1.136 × 10−1 | 4.602 × 10−2 | 2.313 × 10−2 | 1.257 × 10−2 |
Eventually, combining Table 5 and equation (16), the overall mean of maximum response is able to be evaluated as follows:
According to equations (9) and (11), the analytical overall variance expression of the maximum response, σM2, in this example, can be expressed as follows:
The entire evaluation process is similar as the overall mean of maximum response μM above is analyzed; thus, the evaluation results of
Table 6
Estimation results for
Parameter variables | The estimation results corresponding to five estimated points | |||||
X2+ | X1+ | X0 | X1+ | X2+ | ||
T | 2.093 × 10−3 | 1.606 × 10−3 | 1.861 × 10−3 | 2.093 × 10−3 | 2.325 × 10−3 | 2.582 × 10−3 |
S0 | 2.815 × 10−3 | 3.941 × 10−4 | 7.018 × 10−4 | 1.535 × 10−3 | 5.414 × 10−3 | 5.625 × 10−2 |
Ξ | 2.743 × 10−3 | 1.236 × 10−2 | 5.118 × 10−3 | 2.309 × 10−3 | 1.041 × 10−3 | 4.315 × 10−4 |
F | 7.063 × 10−3 | 2.620 × 10−1 | 1.290 × 10−2 | 2.118 × 10−3 | 5.353 × 10−4 | 1.582 × 10−4 |
Combining Table 6 and equation (16), the overall mean square of maximum response is able to be evaluated as follows:
Combining Table 7 and equation (16), the overall standard deviation square of maximum response is able to be evaluated as follows:
Table 7
Estimation results for
Parameter variables | The estimation results corresponding to five estimated points | |||||
X2+ | X1+ | X0 | X1+ | X2+ | ||
T | 8.277 × 10−5 | 1.144 × 10−4 | 9.470 × 10−5 | 8.193 × 10−5 | 7.220 × 10−5 | 6.381 × 10−5 |
S0 | 1.073 × 10−4 | 1.502 × 10−5 | 2.676 × 10−5 | 5.853 × 10−5 | 2.064 × 10−4 | 2.141 × 10−3 |
ξ | 1.046 × 10−4 | 4.710 × 10−4 | 1.951 × 10−4 | 8.802 × 10−5 | 3.971 × 10−5 | 1.644 × 10−5 |
f | 3.851 × 10−4 | 1.813 × 10−2 | 6.021 × 10−4 | 8.076 × 10−5 | 1.773 × 10−5 | 4.661 × 10−6 |
Then, substituting the result of E[
To investigate the evaluation process of response uncertainty in detail, the uncertainties of four cases, i.e., given parameters, structural property parameters (ξ, f), excitation characteristics parameters (T, S0), and all parameters (T, S0, ξ, f), are considered, respectively. Meanwhile, the accuracy of their results is able to be confirmed by utilizing the MCS with a size of 106. The results of these cases are listed in Table 8.
Table 8
Comparison between the MCS and the presented method under different parameter cases.
Considered cases | PEP method | MCS | Method error (%) | |||
ΕμM | ΕσΜ | |||||
Given parameters | 4.602 × 10−2 | 8.986 × 10−3 | — | — | — | — |
Structure parameters | 2.498 × 10−2 | 7.473 × 10−3 | 2.630 × 10−2 | 7.120 × 10−3 | 5.016 | 4.957 |
Excitation parameters | 4.570 × 10−2 | 8.001 × 10−4 | 4.792 × 10−2 | 7.777 × 10−4 | 4.632 | 2.880 |
All parameters | 6.463 × 10−2 | 6.797 × 10−2 | 6.221 × 10−2 | 7.151 × 10−2 | 3.890 | 4.950 |
From Table 8, some conclusions, in this example, can be revealed: (I) the parameter uncertainties have a great influence on response evaluation relative to determination parameters, and the effect of structural parameters on the overall mean evaluation of maximum response is more obvious than that of excitation parameters. (II) All uncertainty parameters are simultaneously considered, and these uncertainties, relative to other cases, have the greatest effect on the response evaluation. (III) The results from PEP are basically in agreement with those acquired using MCS, in which the maximum error between them is just 5.016%.
5.1.3. Response Evaluation Involving Uncertainty Correlated Parameters
To investigate the evaluation process of response uncertainty involving correlated parameter variables, the example, hereinabove, considering all uncertainty parameters (T, S0, ξ, and f), will be further analyzed.
While considering the correlation between the duration T and the intensity S0, the third-moment pseudo-correlation transformation is applied first, so as to convert their correlated variables into independent standard normal variables. The correlated matrix including all parameters can be written as follows:
According to equations (23)-(30), the polynomial coefficients of each parameter can be calculated, and the result is provided in Table 9.
Table 9
Polynomial coefficients of each parameter.
Variables | ai | bi | ci |
T | −0.156 | 0.975 | 0.156 |
S0 | −0.675 | 0.296 | 0.675 |
ξ | −0.156 | 0.975 | 0.156 |
f | 0 | 1 | 0 |
Combining equations (27)-(29) and Cholesky decomposition, the lower triangular matrix
Substituting the lower triangular matrix
Table 10
Five-point estimated coordinates in original space after correlation transformation.
Parameter variables | The original space coordinates corresponding to five estimated points | ||||
X2+ | X1+ | X0 | X1+ | X2+ | |
T | 1.429 | 5.933 | 10.000 | 14.070 | 18.571 |
S0 | −9.13 × 10−1 | −9.208 × 10−2 | 6.500 × 10−1 | 1.392 | 2.213 |
ξ | 4.287 × 10−3 | 1.180 × 10−2 | 3.000 × 10−2 | 4.220 × 10−2 | 5.571 × 10−2 |
f | 8.572 × 10−1 | 1.458 | 2.000 | 2.542 | 3.143 |
Substituting the estimation point coordinates in original space from Table 10 and their weight (see Table 1) into equation (17), the evaluated result of univariate conditional mean, conditional mean square, and conditional standard variance square of response, i.e., μmi(X),
Table 11
Estimation results for μmi(X) in original space after correlation transformation.
Parameter variables | μmi | The estimation results corresponding to five estimated points | ||||
X2+ | X1+ | X0 | X1+ | X2+ | ||
T | 4.561 × 10−2 | 3.169 × 10−2 | 4.260 × 10−2 | 4.602 × 10−2 | 4.814 × 10−2 | 4.979 × 10−2 |
S0 | 4.602 × 10−2 | −6.464 × 10−2 | −6.519 × 10−3 | 4.602 × 10−2 | 9.856 × 10−2 | 1.566 × 10−1 |
ξ | 6.170 × 10−2 | 3.220 × 10−1 | 1.170 × 10−1 | 4.602 × 10−2 | 3.272 × 10−2 | 2.578 × 10−2 |
f | 6.079 × 10−2 | 5.118 × 10−1 | 1.135 × 10−1 | 4.602 × 10−2 | 2.314 × 10−2 | 1.257 × 10−2 |
Table 12
Estimation results for
Parameter variables | The estimation results corresponding to five estimated points | |||||
X2+ | X1+ | X0 | X1+ | X2+ | ||
T | 2.086 × 10−3 | 1.004 × 10−3 | 1.815 × 10−3 | 2.118 × 10−3 | 2.317 × 10−3 | 2.479 × 10−3 |
S0 | 3.620 × 10−3 | 4.179 × 10−3 | 4.251 × 10−5 | 2.118 × 10−3 | 9.714 × 10−3 | 2.455 × 10−2 |
ξ | 5.582 × 10−3 | 1.037 × 10−1 | 1.369 × 10−2 | 2.118 × 10−3 | 1.071 × 10−3 | 6.143 × 10−4 |
f | 7.062 × 10−3 | 2.620 × 10−1 | 1.289 × 10−2 | 2.118 × 10−3 | 5.356 × 10−4 | 1.582 × 10−4 |
Table 13
Estimation results for
Parameter variables | The estimation results corresponding to five estimated points | |||||
X2+ | X1+ | X0 | X1+ | X2+ | ||
T | 8.523 × 10−5 | 2.303 × 10−4 | 9.779 × 10−5 | 8.076 × 10−5 | 7.249 × 10−5 | 6.693 × 10−5 |
S0 | 1.380 × 10−4 | 1.593 × 10−4 | 1.621 × 10−6 | 8.075 × 10−5 | 3.704 × 10−4 | 9.360 × 10−4 |
ξ | 2.128 × 10−4 | 3.953 × 10−3 | 5.220 × 10−4 | 8.076 × 10−5 | 4.081 × 10−5 | 2.342 × 10−5 |
f | 3.850 × 10−4 | 1.181 × 10−2 | 6.015 × 10−4 | 8.076 × 10−5 | 1.773 × 10−5 | 4.659 × 10−6 |
Having taken into account the effect of correlation of duration T and spectral S0 of the excitation, the overall mean and standard deviation of maximum response, combing Tables 11–13 and equation (16), are able to be evaluated as follows:
In order to further investigate the uncertainty effect on stochastic response involving correlated parameter variables in detail, four cases involving correlated parameter variables, i.e., given parameters, structure parameters (ξ and f), excitation parameters (T and S0), and all parameters (T, S0, ξ, and f), are considered, respectively. Meanwhile, the accuracy of their results is able to be confirmed by utilizing the MCS with a size of 106. The results of these cases are listed in Table 14.
Table 14
Result comparison between independent variables and correlation variables.
Considered cases | Error with MCS (%) | |||||
Given parameters | 4.602 × 10−2 | 8.986 × 10−3 | — | — | ||
Structural parameters | 2.498 × 10−2 | 7.473 × 10−3 | 7.647 × 10−2 | 7.202 × 10−2 | 3.730 | 3.311 |
Excitation parameters | 4.570 × 10−2 | 8.001 × 10−4 | 4.561 × 10−2 | 4.061 × 10−2 | 4.124 | 2.895 |
All parameters | 6.463 × 10−2 | 6.797 × 10−2 | 7.606 × 10−2 | 8.238 × 10−2 | 2.578 | 3.193 |
From Table 14, some conclusions, in this example, can be revealed: (I) the correlation in this example has a great influence on response evaluation relative to the independent situation: if ignored the effect of correlation, the evaluation result in overall mean of maximum response will be underestimated, especially for structural property parameters and all parameters. When considering the excitation characteristic parameter, the overall standard deviation of the maximum result will be overestimated; when considering all parameters, the opposite conclusion will be obtained. (II)While the correlation is taken into account, the effect of excitation characteristic parameters on the overall mean of maximum response and the overall standard deviation is more obvious than in other cases. (III) The calculation results including correlation are basically in agreement with those obtained using MCS, in which the maximum error between them is just 4.124%.
5.2. Example 2: 2-DOF Linear Simply Isolated Bridge Subjected to Dynamic Excitation
Figure 2 shows a 2-DOF linear isolated bridge in which one of the masses is subjected to dynamic vertical excitation P(t).
[figure(s) omitted; refer to PDF]
Assuming their structure-property parameters, that is, mass m, elastic modulus E, and initial moment I, are the same, the natural frequency ωi of the simply supported isolated bridge, based on linear vibration theory, can be provided as follows:
In the frequency domain, the standard deviation of the displacement responses, based on the random vibration theory, is obtained as follows:
Table 15
Statistic moments and correlation matrix of uncertain system parameters.
Parameter | Mean | COV | Skewness | Correlation matrix |
T | 15 s | 0.4 | 0.431 | |
S0 | 780 cm2/s3 | 0.6 | 1.608 | |
ξ1 | 0.043 | 0.3 | 0.431 | |
ξ2 | 0.069 | 0.3 | 0.431 | |
m | 4.616 × 105 kg | 0.1 | 0.301 | |
L | 1.500 × 104 mm | 0.1 | 0.301 | |
I | 7.087 × 1011 mm4 | 0.1 | 0.301 | |
E | 3.150 × 104 MPa | 0.1 | 0 |
To investigate the evaluation influence of both masses on response uncertainty involving correlated parameter variables, the mean and standard deviation of the maximum response evaluation under the given parameters are contrasted with the correlation parameters. Meanwhile, for the uncertainty response evaluation, the following three cases were analyzed:
Case 1.
Considering only uncertainties contained in excitation parameters, S0 and T.
Case 2.
Considering only uncertainties contained in the structural parameters L, I, E, m, and ξ.
Case 3.
Considering uncertainties of all uncertainty parameters, S0, T, L, I, E, m, and ξ.
Partial calculation results with regard to the correlation transformation process (third-moment pseudocorrelation normal transformation technology) are given, such as polynomial coefficients of each parameter (see Table 16), the lower triangular matrix L0, and five estimation point coordinates, in the original space (see Table 17).
Combiningequations (27)–(29) and the Cholesky decomposition, thelower triangular matrix L0 can be obtained as follows:
Having been converted by the third-moment pseudonormal transformation technology, the five estimation point coordinates in the original space are listed in Table 17.
Both masses’ calculation results of the response evaluation, including correlated parameter variables, are provided inTables 18 and 19. Meanwhile, the accuracy of their results can be confirmed by utilizing an MCS with a size of 106, which are listed in Tables 18 and 19 as well.
After observing and contrasting the results in Table 18, some conclusions on Mass 1 can be drawn as follows: (I) To consider the uncertain and correlated system parameter variables, relative to the determination parameter situation, the evaluation results of overall mean and standard deviation of the maximum response have a great influence; for the overall mean of maximum response, the evaluation results will be overestimated; for the overall standard deviation of maximum response, the evaluation result will be overestimated under considering structure-property and all parameters, while the evaluation results, under excitation-characteristics parameters considered, will be underestimated. (II) For the overall mean of maximum response, the effect of the excitation-characteristic parameters was more remarkable than structure-property parameters; for the overall standard deviation of maximum response, the opposite conclusion is obtained. (III) Their calculation results are in agreement with those obtained using MCS, in which the maximum error between them is merely 4.993%. Similarly, the conclusions of Mass.1 are suitable for Mass.2 inTable 19.
Table 16
Polynomial coefficients of each parameter.
Variables | ai | bi | ci |
T | −0.072 | 0.995 | 0.072 |
S0 | −0.283 | 0.916 | 0.283 |
ξ1 | −0.072 | 0.995 | 0.072 |
ξ2 | −0.072 | 0.995 | 0.072 |
E | −0.0503 | 0.997 | 0.050 |
m | −0.0503 | 0.997 | 0.050 |
L | −0.0503 | 0.997 | 0.050 |
I | 0 | 1 | 0 |
Table 17
Five estimation point coordinates in original space after correlation transformation.
Parameter variables | The original space coordinates corresponding to five estimated points | ||||
X2+ | X1+ | X0 | X1+ | X2+ | |
T | 32.140 | 6.866 | 15.000 | 23.134 | 32.142 |
S0 | 2.625 × 105 | −9.557 × 103 | 7.800 × 104 | 1.656 × 105 | 2.625 × 105 |
ξ1 | 7.985 × 10−2 | 2.551 × 10−2 | 4.310 × 10−2 | 6.112 × 10−2 | 7.985 × 10−2 |
ξ2 | 12.811 | 4.093 × 10−2 | 6.930 × 10−2 | 9.710 × 10−2 | 1.281 × 10−1 |
E | 5.934 × 105 | 3.990 × 105 | 4.616 × 105 | 5.242 × 105 | 5.935 × 105 |
m | 1.928 × 104 | 1.296 × 104 | 1.500 × 104 | 1.703 × 104 | 1.929 × 104 |
L | 9.263 × 1011 | 5.882 × 1011 | 7.087 × 1011 | 8.292 × 1011 | 9.627 × 1011 |
I | 4.249 × 104 | 2.629 × 104 | 3.150 × 104 | 3.671 × 104 | 4.249 × 104 |
Table 18
Response evaluation result comparison between presented method and MCS for Mass.1.
Considered cases | Presented method | MCS | Method error (%) | |||
EμM | EσM | |||||
Given parameters | 5.141 × 10−3 | 4.256 × 10−3 | — | — | — | — |
Structure parameters | 3.952 × 10−3 | 1.466 × 10−2 | 3.767 × 10−3 | 1.538 × 10−2 | 4.911 | 4.681 |
Excitation parameters | 3.657 × 10−3 | 5.061 × 10−3 | 3.493 × 10−3 | 5.327 × 10−3 | 4.500 | 4.993 |
All parameters | 2.466 × 10−3 | 1.452 × 10−2 | 2.553 × 10−3 | 1.412 × 10−2 | 3.416 | 2.832 |
Table 19
Response evaluation result comparison between presented method and MCS for Mass.2.
Considered cases | Presented method | MCS | Method error (%) | |||
EμM | EσM | |||||
Given parameters | 7.251 × 10−3 | 2.186 × 10−3 | — | — | — | — |
Structure parameters | 1.808 × 10−3 | 1.835 × 10−2 | 1.886 × 10−3 | 1.905 × 10−2 | 4.136 | 3.675 |
Excitation parameters | 6.403 × 10−3 | 4.512 × 10−3 | 6.379 × 10−3 | 4.370 × 10− | 3.762 | 3.249 |
All parameters | 9.595 × 10−4 | 1.850 × 10−2 | 9.255 × 10−4 | 1.768 × 10−2 | 3.673 | 4.638 |
6. Conclusions
This study focused on evaluating uncertainty response with correlated random variables, the primary conclusion, on the basis of two examples, which were able to be drawn:
(1) Without being any sensitivity analysis with regard to the maximum response, the first two statistical moments of the maximum response, including correlated system parameter variables, were able to be fast evaluated.
(2) With just needing the first three moments and correlation matrix of system parameter variables instead of knowing their joint PDF or marginal PDF, the mean value and standard deviation of the maximum response, including correlated system parameter variables, were capable to be steadily evaluated.
(3) While taking into account the correlated system parameter variables, the overall mean and standard deviation’s evaluation results of maximum response, relative to the determination parameter situation, have a great influence: ignoring the effect of these parameter variables will underestimate or overestimate the actual response evaluation.
(4) When considering the effect of correlation among system parameter variables, one can find the effect of statistic maximum response evaluation with respect to structural property parameters is relatively obvious than excitation characteristic parameters in example 1, whereas the opposite conclusion can be obtained in example 2.
(5) Compared with the ones using MCS, the accuracy of response evaluation by the presented method was trustworthy.
Authors’ Contributions
Qiang Fu and Jiang jun Liu conceived, designed, and performed the study. Xiao Li and Xueji Cai collected statistical sample dates of engineering examples used in the paper. Zilong Meng and Jiarui Shi wrote and revised the paper together. The authors have read and approved the final published manuscript.
Acknowledgments
The research article was supported by the National Natural Science Foundations of China, whose grant numbers are U1134209 and U1434204, respectively, and the Natural Science Foundation Project of Hunan Province in 2022, which was named as “Research on the Influencing Factors of Dynamic Stiffness of Cutting Machine-Foundation-Soil System.” It was also supported by the Scientific Research Project of Hengyang Science and Technology Bureau, grant no. 2020jh012854, the Scientific Research Project of Hengyang Science and Technology Bureau, grant no. 2019jhzx0639, and the Education and Science Research Program for Fujian Middle Aged and Young Teachers, grant no. JT180504. These supports are gratefully acknowledged.
[1] A. Preumont, Random Vibration and Spectral Analysis, 1994.
[2] X. P. Zhang, Y. J. Jiang, Y. Cai, S. S. Sugimoto, "Anti-plane dynamic response of a shallow lined tunnel with imperfect interface in anisotropic half-space medium," Tunnelling and Underground Space Technology, vol. 112 no. 1, 2021.
[3] Q. Fu, X. Li, Z. L Meng, Y. N. Liu, X. J. Cai, H. W. Fu, "Reliability assessment on pile foundation bearing capacity based on the first four moments in high-order moment method," Shock and Vibration, vol. 2021 no. 1,DOI: 10.1155/2021/2082021, 2021.
[4] Y. K. Wen, "Equivalent linearization for hysteretic systems under random excitation," Journal of Applied Mechanics, vol. 47 no. 1, pp. 150-154, DOI: 10.1115/1.3153594, 1980.
[5] W. D. Iwan, N. C. Gates, "Estimating earthquake response of simple hysteretic structures," Journal of Engineering Mechanics-ASCE, vol. 105 no. 3,DOI: 10.1061/jmcea3.0002481, 1979.
[6] P.-T. D. Spanos, "On the existence and uniqueness of solutions generated by equivalent linearization," International Journal of Non-linear Mechanics, vol. 13 no. 2, pp. 71-78, DOI: 10.1016/0020-7462(78)90017-3, 1979.
[7] Q. Fu, Z. Zhang, X. Zhao, M. Hong, D. Niu, "Water saturation effect on the dynamic mechanical behaviour and scaling law effect on the dynamic strength of coral aggregate concrete," Cement and Concrete Composites, vol. 120 no. 1,DOI: 10.1016/j.cemconcomp.2021.104034, 2021.
[8] Q. Fu, M. Bu, D. Li, W. Xu, J. He, D. Niu, "Resistance to sulfate attack and chemo-damage-transport model of sulfate ions for tunnel lining concrete under the action of loading and flowing groundwater," ACS Sustainable Chemistry & Engineering, vol. 9 no. 42,DOI: 10.1021/acssuschemeng.1c05794, 2021.
[9] X. W. Ji, G. Q. Huang, Y. G. Zhao, "Probabilistic flutter analysis of bridge considering aerodynamic and structural parameter uncertainties," Journal of Wind Engineering and Industrial Aerodynamics, vol. 201,DOI: 10.1016/j.jweia.2020.104168, 2020.
[10] Y. G. Zhao, T. Ono, H. Idota, "Response uncertainty and time-variant reliability analysis for hysteretic MDF structures," Earthquake Engineering & Structural Dynamics, vol. 1999 no. 28, pp. 1187-1213, DOI: 10.1002/(sici)1096-9845(199910)28:10<1187::aid-eqe863>3.0.co;2-e, 1999.
[11] Y. G. Zhao, J. R. Jiang, J. J. Chen, "A unified treatment of uncertainties in structural reliability analysis," Earthquake Engineering and Engineering Vibration, vol. 15 no. 4, 1995. in Chinese
[12] C. Pan, L. X. Xie, X. Li, K. Liu, P. F. Gao, L. G. Tian, "Numerical investigation of effect of eccentric decoupled charge structure on blasting-induced rock damage," Journal of Central South University of Technology, vol. 29 no. 1, pp. 663-679, 2022.
[13] T. Headrick, S. Sawilowsky, "Simulating correlated multivariate nonnormal distributions: extending the fleishman power method," Psychometrika, vol. 64 no. 2, pp. 71-78, DOI: 10.1007/bf02294537, 1999.
[14] X. Chen, Y. K. Tung, "Investigation of polynomial normal transform," Structural Safety, vol. 25 no. 4, pp. 423-445, DOI: 10.1016/s0167-4730(03)00019-5, 2003.
[15] D. Q. Li, S. B. Wu, C. B. Zhou, K. K. Phoon, "Performance of translation approach for modeling correlated non-normal variables," Structural Safety, vol. 39 no. 1, pp. 52-61, DOI: 10.1016/j.strusafe.2012.08.001, 2012.
[16] J. Liu, B. Yu, L. Yang, "Influences of Orthogonal and Nataf transformations on precision of first order reliability method," Chinese Journal of Applied Mechanics, vol. 32 no. 1, pp. 125-131, 2015. in Chinese
[17] R. Singh, C. Lee, "Frequency response of linear systems with parameter uncertainties," Journal of Sound and Vibration, vol. 168 no. 1, pp. 71-92, DOI: 10.1006/jsvi.1993.1362, 1993.
[18] P. C. Chen, W. W. Soroka, "Impulse response of a dynamic system with statistical properties," Journal of Sound and Vibration, vol. 31 no. 3, pp. 309-314, DOI: 10.1016/s0022-460x(73)80275-5, 1973.
[19] J. Xu, D. C. Feng, "Seismic response analysis of nonlinear structures with uncertain parameters under stochastic ground motions," Soil Dynamics and Earthquake Engineering, vol. 111, pp. 149-159, DOI: 10.1016/j.soildyn.2018.04.023, 2018.
[20] H. Yu, B. Wang, Z. Gao, Y. Li, "An efficient dimension-adaptive numerical integration method for stochastic dynamic analysis of structures with uncertain parameters," International Journal of Structural Stability and Dynamics, vol. 21 no. 3,DOI: 10.1142/s0219455421500358, 2020.
[21] C. Zhiguo, D. Zhongmin, B. Sifeng, "The structural dynamics model validation based on Monte Carlo method," Issue, vol. 32 no. 16, pp. 76-81, 2013.
[22] Z. Fengqi, "A new multiple-model analysis method considering structural uncertainty," Proceedings of the International Conference on Civil, Architecture and Environmental Engineering (ICCAE), .
[23] D. Kiureghian, "Measures of structural safety under imperfect states of knowledge," Journal of Structural Engineering, vol. 115 no. 5, pp. 1119-1140, DOI: 10.1061/(asce)0733-9445(1989)115:5(1119), 1989.
[24] M. Shinozuka, "Structural response variability," Journal of Engineering Mechanics, vol. 115 no. 6, pp. 825-842, DOI: 10.1061/(ASCE)0733-9399(1987)113:6(825), 1989.
[25] A. R. Ibrahim, "Structural dynamics with parameter uncertainties," Applied Mechanics Reviews, vol. 40 no. 3, pp. 309-314, DOI: 10.1115/1.3149532, 1987.
[26] G. Muscolino, G. Ricciardi, N. Impollonia, "Improved dynamic analysis of structures with mechanical uncertainties under deterministic input," Probabilistic Engineering Mechanics, vol. no. 15, pp. 199-212, DOI: 10.1016/s0266-8920(99)00021-1, 2000.
[27] Z. H. Lu, C. H. Cai, Y. G. Zhao, Y. Leng, Y. Dong, "Normalization of correlated random variables in structural reliability analysis using fourth-moment transformation," Structural Safety, vol. 82,DOI: 10.1016/j.strusafe.2019.101888, 2020.
[28] C. H. Chang, Y. K. Tung, J. C. Yang, "Monte Carlo simulation for correlated variables with marginal distributions," Journal of Hydraulic Engineering, vol. 121 no. 7,DOI: 10.1061/(asce)0733-9429(1995)121:7(573), 1995.
[29] M. Hohenbichler, R. Rackwitz, "Non-normal dependent vectors in structural safety," Journal of the Engineering Mechanics Division, vol. 107 no. 6, pp. 1227-1238, DOI: 10.1061/jmcea3.0002777, 1981.
[30] Q. Xiao, "Evaluating correlation coefficient for Nataf transformation," Probabilistic Engineering Mechanics, vol. 37 no. 7,DOI: 10.1016/j.probengmech.2014.03.010, 2014.
[31] M. A. A. P. D. Kiureghian, "Structural reliability under incomplete probability information," Journal of Engineering Mechanics-ASCE, vol. 112 no. 1,DOI: 10.1061/(asce)0733-9399(1986)112:1(85), 1986.
[32] P. L. Liu, A. D. Kiureghian, "Multivariate distribution models with prescribed marginals and covariances," Probabilistic Engineering Mechanics, vol. 1 no. 2, pp. 105-112, DOI: 10.1016/0266-8920(86)90033-0, 1986.
[33] Z. H. Lu, C. H. Cai, Y. G. Zhao, "Structural reliability analysis including correlated random variables based on third-moment transformation," Journal of Structural Engineeing, vol. 8 no. 143,DOI: 10.1061/(asce)st.1943-541x.0001801, 2017.
[34] R. G. Gallager, "Stochastic Processes: Theory for Applications," Stochastic Processes: Theory for Applications, 2013.
[35] Z. Sheng, S. Q. Xie, C. Y. Pang, Probability and Mathematics Statistics, 2008. in Chinese
[36] Y. Zhao, Z. Lu, Structural Reliability: Approaches from Perspectives of Statistical Moments, 2021.
[37] Y. G. Zhao, T. Ono, "New point estimates for probability moments," Journal of Engineering Mechanics, vol. 126 no. 4, pp. 433-436, DOI: 10.1061/(asce)0733-9399(2000)126:4(433), 2000.
[38] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas and Mathematical Tables, 1967.
[39] Y. G. Zhao, Z. H. Lu, T. Ono, "A simple third-moment method for structural reliability," Journal of Asian Architecture and Building Engineering, vol. 5 no. 1, pp. 129-136, DOI: 10.3130/jaabe.5.129, 2006.
[40] Y. G. Zhao, "Third-moment standardization for structural reliability analysis," Journal of Structural Engineering, vol. 126 no. 6, pp. 724-732, DOI: 10.1061/(asce)0733-9445(2000)126:6(724), 2000.
[41] X. D. Zhang, Linear Algebra in Signal Processing, 1997. in Chinese
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2022 Qiang Fu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/
Abstract
It has been realized that the influence of system parameter uncertainties may be very significant, even dominant, in stochastic response evaluation. Nevertheless, in reality, this evaluation process may be difficult to conduct due to these parameter variables (viz. structural property parameters, such as stiffness, damping, and strength, and excitation characteristics parameters, such as frequency content and duration) that are usually correlated with each other. Therefore, this study devotes to develop a method for evaluating stochastic response uncertainty involving correlated system parameter variables. In this method, the evaluation expression for the mean and standard deviation of the maximum response including uncertainty parameter variables are provided first; subsequently, a third-moment pseudo-correlation normal transformation is able to be performed for converting the correlated and non-normal system parameter variables with unknown joint probability density function (PDF) or marginal PDF into the mutually independent standard normal ones; ultimately, a point estimate procedure (PEP) based on univariate dimension reduction integration can be carried out for evaluating the structural stochastic response including uncertainty system parameters. Several numerical examples with an engineering background involving correlated system parameter variables are analyzed and discussed under stochastic excitation, and their results are compared with those yielded by Monte Carlo simulation (MCS) so as to demonstrate the effectiveness of the approach proposed. It indicated that the method proposed, in this study, provides an effective path to deal with uncertainty evaluation of stochastic structural response involving correlated random variables.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details






1 School of Civil Engineering, Central South University, Changsha, Hunan 410075, China
2 Hunan Technical College of Railway High-Speed, Hengyang, Hunan 421001, China
3 School of Civil Engineering, Central South University, Changsha, Hunan 410075, China; National Engineering Laboratory for High Speed Railway Construction, Changsha, Hunan 410075, China
4 School of Architectural Engineering, Sanming University, Sanming, Fujian 365004, China