Abstract

Materials with insulator-metal transitions promise advanced functionalities for future information technology. Patterning on the microscale is key for miniaturized functional devices, but material properties may vary spatially across microstructures. Characterization of these miniaturized devices requires electronic structure probes with sufficient spatial resolution to understand the influence of structure size and shape on functional properties. The present study demonstrates the use of imaging soft X-ray absorption spectroscopy with a spatial resolution better than 2 μm to study the insulator-metal transition in vanadium dioxide thin-film microstructures. This novel technique reveals that the transition temperature for the conversion from insulating to metallic vanadium dioxide is lowered by 1.2 K ± 0.4 K close to the structure edges compared to the center. Facilitated strain release during the phase transition is discussed as origin of the observed behavior. The experimental approach enables a detailed understanding of how the electronic properties of quantum materials depend on their patterning at the micrometer scale.

Details

Title
Microstructure effects on the phase transition behavior of a prototypical quantum material
Author
Schunck, Jan O. 1 ; Döring, Florian 2 ; Rösner, Benedikt 2 ; Buck, Jens 3 ; Engel, Robin Y. 1 ; Miedema, Piter S. 4 ; Mahatha, Sanjoy K. 5 ; Hoesch, Moritz 4 ; Petraru, Adrian 6 ; Kohlstedt, Hermann 6 ; Schüßler-Langeheine, Christian 7 ; Rossnagel, Kai 3 ; David, Christian 2 ; Beye, Martin 1 

 Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany (GRID:grid.7683.a) (ISNI:0000 0004 0492 0453); Universität Hamburg, Physics Department, Hamburg, Germany (GRID:grid.9026.d) (ISNI:0000 0001 2287 2617) 
 Paul Scherrer Institut (PSI), Villigen, Switzerland (GRID:grid.5991.4) (ISNI:0000 0001 1090 7501) 
 Kiel University, Institut für Experimentelle und Angewandte Physik, Kiel, Germany (GRID:grid.9764.c) (ISNI:0000 0001 2153 9986); Deutsches Elektronen-Synchrotron DESY, Ruprecht-Haensel-Labor, Hamburg, Germany (GRID:grid.7683.a) (ISNI:0000 0004 0492 0453) 
 Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany (GRID:grid.7683.a) (ISNI:0000 0004 0492 0453) 
 Deutsches Elektronen-Synchrotron DESY, Ruprecht-Haensel-Labor, Hamburg, Germany (GRID:grid.7683.a) (ISNI:0000 0004 0492 0453); Thapar Institute of Engineering and Technology, School of Physics and Materials Science, Patiala, India (GRID:grid.412436.6) (ISNI:0000 0004 0500 6866) 
 Kiel University, Faculty of Engineering, Chair of Nanoelectronics, Kiel, Germany (GRID:grid.9764.c) (ISNI:0000 0001 2153 9986) 
 Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany (GRID:grid.424048.e) (ISNI:0000 0001 1090 3682) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2679000186
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.