It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Tubular aggregates (TA) are honeycomb-like arrays of sarcoplasmic-reticulum (SR) tubules affecting aged glycolytic fibers of male individuals and inducing severe sarcomere disorganization and muscular pain. TA develop in skeletal muscle from Tubular Aggregate Myopathy (TAM) patients as well as in other disorders including endocrine syndromes, diabetes, and ageing, being their primary cause unknown. Nowadays, there is no cure for TA. Intriguingly, both hypoxia and calcium dyshomeostasis prompt TA formation, pointing to a possible role for mitochondria in their setting. However, a functional link between mitochondrial dysfunctions and TA remains unknown. Herein, we investigate the alteration in muscle-proteome of TAM patients, the molecular mechanism of TA onset and a potential therapy in a preclinical mouse model of the disease. We show that in vivo chronic inhibition of the mitochondrial ATP synthase in muscle causes TA. Upon long-term restrained oxidative phosphorylation (OXPHOS), oxidative soleus experiments a metabolic and structural switch towards glycolytic fibers, increases mitochondrial fission, and activates mitophagy to recycle damaged mitochondria. TA result from the overresponse of the fission controller DRP1, that upregulates the Store-Operate-Calcium-Entry and increases the mitochondria-SR interaction in a futile attempt to buffer calcium overloads upon prolonged OXPHOS inhibition. Accordingly, hypoxic muscles cultured ex vivo show an increase in mitochondria/SR contact sites and autophagic/mitophagic zones, where TA clusters grow around defective mitochondria. Moreover, hypoxia triggered a stronger TA formation upon ATP synthase inhibition, and this effect was reduced by the DRP1 inhibitor mDIVI. Remarkably, the muscle proteome of TAM patients displays similar alterations in mitochondrial dynamics and in ATP synthase contents. In vivo edaravone treatment in mice with restrained OXPHOS restored a healthy phenotype by prompting mitogenesis and mitochondrial fusion. Altogether, our data provide a functional link between the ATP synthase/DRP1 axis and the setting of TA, and repurpose edaravone as a possible treatment for TA-associated disorders.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 Departamento de Biología Molecular, Centro de Biología Molecular ‘“Severo Ochoa’” (CBMSO), c/ Nicolás Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain (GRID:grid.5515.4) (ISNI:0000000119578126)
2 Departamento de Biología Molecular, Centro de Biología Molecular ‘“Severo Ochoa’” (CBMSO), c/ Nicolás Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain (GRID:grid.5515.4) (ISNI:0000000119578126); Centro de Investigación Biomédica en red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain (GRID:grid.452372.5) (ISNI:0000 0004 1791 1185)
3 Departamento de Biología Molecular, Centro de Biología Molecular ‘“Severo Ochoa’” (CBMSO), c/ Nicolás Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain (GRID:grid.5515.4) (ISNI:0000000119578126); Instituto Universitario de Biología Molecular, IUBM, Universidad Autónoma de Madrid, Madrid, Spain (GRID:grid.5515.4) (ISNI:0000000119578126)
4 Departamento de Biología Molecular, Centro de Biología Molecular ‘“Severo Ochoa’” (CBMSO), c/ Nicolás Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain (GRID:grid.5515.4) (ISNI:0000000119578126); Instituto Universitario de Biología Molecular, IUBM, Universidad Autónoma de Madrid, Madrid, Spain (GRID:grid.5515.4) (ISNI:0000000119578126); Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain (GRID:grid.419651.e) (ISNI:0000 0000 9538 1950)
5 Departamento de Biología Molecular, Centro de Biología Molecular ‘“Severo Ochoa’” (CBMSO), c/ Nicolás Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain (GRID:grid.5515.4) (ISNI:0000000119578126); Centro de Investigación Biomédica en red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain (GRID:grid.452372.5) (ISNI:0000 0004 1791 1185); Instituto Universitario de Biología Molecular, IUBM, Universidad Autónoma de Madrid, Madrid, Spain (GRID:grid.5515.4) (ISNI:0000000119578126); Instituto de Investigación Hospital 12 de Octubre, i+12, Madrid, Spain (GRID:grid.512044.6) (ISNI:0000 0004 7666 5367)