Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As the world moves into the exciting age of Healthcare 4.0, it is essential that patients and clinicians have confidence and reassurance that the real-time clinical decision support systems being used throughout their care guarantee robustness and optimal quality of care. However, current systems involving autonomic behaviour and those with no prior clinical feedback, have generally to date had little focus on demonstrating robustness in the use of data and final output, thus generating a lack of confidence. This paper wishes to address this challenge by introducing a new process mining approach based on a statistically robust methodology that relies on the utilisation of conditional survival models for the purpose of evaluating the performance of Healthcare 4.0 systems and the quality of the care provided. Its effectiveness is demonstrated by analysing the performance of a clinical decision support system operating in an intensive care setting with the goal to monitor ventilated patients in real-time and to notify clinicians if the patient is predicted at risk of receiving injurious mechanical ventilation. Additionally, we will also demonstrate how the same metrics can be used for evaluating the patient quality of care. The proposed methodology can be used to analyse the performance of any Healthcare 4.0 system and the quality of care provided to the patient.

Details

Title
Process Mining the Performance of a Real-Time Healthcare 4.0 Systems Using Conditional Survival Models
Author
Marshall, Adele H 1 ; Novakovic, Aleksandar 1 

 School of Mathematics and Physics, Queen’s University Belfast, University Road, Belfast BT7 1NN, Northern Ireland, UK; Joint Research Centre in AI for Health and Wellness, Faculty of Business and IT, Ontario Tech University, 2000 Simcoe Street North, Oshawa, ON L1G 0C5, Canada 
First page
196
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19994893
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2679613614
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.