1. Introduction
Degenerative diseases of the central nervous system (CNS) are enigmatic and complex conditions that, despite their different etiologies, share common events, leading to neuronal death and irreversible loss of cognitive, visual, acoustic, or motor function.
As the neural component of the eye, the retina is considered to be part of the CNS, and consists of several layers of perfectly organized and interconnected neurons and glial cells [1]. Light is captured by photoreceptors (rods and cones) to initiate the phototransduction cascade; visual information is then processed and sent to the brain, resulting in visual perception, allowing us to perceive the surrounding environment. The high metabolism and oxygen consumption intrinsic to photoreceptor cells leads to the production of free radicals, which must be in perfect balance with endogenous and exogenous antioxidant and anti-inflammatory mechanisms. This equilibrium is lost in the states of cell damage induced by retinal pathologies, leading to morphological and functional alterations that can be clinically observed using different methodologies, including optical coherence tomography and electrophysiological testing [2,3]. The central region of the human retina is the fovea, where the highest density of cones is concentrated. This region has a unique architecture [4], corresponds to the area of maximal visual acuity (VA), and is subject to great environmental stress.
Inherited retinal dystrophies (IRDs) are a group of progressive retinal degenerative disorders that drive the loss of visual function. They comprise many overlapping conditions, such as retinitis pigmentosa (RP), Leber congenital amaurosis (LCA), and Stargardt disease, among others. Together, IRDs have a prevalence of one case in every 3000 individuals [5], with hundreds of genes being linked to the diseases [6]. IRDs are typically classified based on the cell type that is predominantly affected and occur in both syndromic and non-syndromic forms. The most common form of rod dystrophy is RP, whereas the most frequent cone dystrophy is Stargardt disease. Although hundreds of genes have been identified as direct or contributing causes of retinal degeneration in IRDs, the predominant phenotype is an early loss of photoreceptor cells, which are unable to regenerate. During disease progression, all IRDs share basic common mechanisms with other CNS degenerative diseases, including oxidative stress, neuroinflammation and cell death. Microglial cells and, later, astrocytes and Müller cells, secrete multiple pro-inflammatory mediators including cytokines, chemokines, trophic factors, reactive oxygen species (ROS), nitric oxide (NO) and tumor necrosis factor alpha (TNF-𝛼), which promote chronic inflammation and are related to severe pathological side-effects (reviewed in [3]). Several drugs with antioxidant and/or anti-inflammatory properties have shown promising results both in vitro and in vivo for the treatment of IRDs [3,7]. Gene- and cell-based therapies are not yet commonly available, and no single drug has been proven to prevent or revert visual loss. Combined therapies of antioxidant, anti-inflammatory and antiapoptotic agents are a common pharmacological approach to slow down the degenerative processes, and to preserve visual function and quality of life. A promising design of new hybrid compounds with more than one mode of action is also under investigation. It is important to note that even a degenerated retina with a complete loss of vision can benefit from the administration of neuroprotective factors, which aid in the maintenance of other non-visual functions, such as the control of circadian rhythms and pupil contraction [8].
In this review, we will focus on the effects of oxidative stress and inflammation in the pathogenesis of IRDs and neuroprotective approaches that slow vision loss caused by oxidative damage and pro-inflammatory processes.
2. Definition of Oxidative Stress and Inflammation
2.1. Oxidative Stress
Oxidative stress is defined as an imbalance in the formation and removal of ROS, which occurs when the production of free radicals, atoms or molecules that have an unpaired electron cannot be counteracted by antioxidant responses [9]. Oxygen- and nitrogen-containing species are susceptible to these energetic changes, which can occur as a result of cellular metabolism, generating ROS and reactive nitrogen species (RNS) [10]. Reactive oxygen and nitrogen species (RONS) can react with other stable molecules (e.g., proteins, lipids), promoting their loss of function and destabilizing cellular homeostasis [10]. Accordingly, oxidative and nitroxidative stress involves not only redox-mediated reactions, but also essential metabolic pathways [11,12]. In this review, the term oxidative stress will be used to describe both oxidative and nitroxidative stress.
Different subcellular sources of RONS have been established, including mitochondria, endoplasmic reticulum (ER), microsomes and peroxisomes, and they can be generated by cytosolic and plasma membrane enzymes. Depending on the source, it is possible to differentiate the main reactive species that are produced [13]. Mitochondria are one of the major ROS producers, generating great quantities of not only superoxide anion radicals (O2•−) as a by-product of the electron transport chain, but also hydrogen peroxide (H2O2) [14]. Beyond the mitochondria, the transmembrane NADPH oxidases (NOXs) also generate O2•− and/or H2O2, depending on their location and regulation [13]. The ER and peroxisomes contain various types of oxidases that are also able to generate O2•− and H2O2 [15,16]. H2O2 is recognized as the major ROS in redox signaling pathways [13], and is produced by the dismutation of O2•− (which is short-lived) to H2O2 (which is more stable) by cytosolic, mitochondrial, and nuclear superoxide dismutase (SOD) enzymes [17]. Despite the diverse cellular sources of H2O2 and its ability to modulate different redox cellular responses, it is less reactive than the hydroxyl radical (•OH), which is the most reactive ROS. •OH is formed by the interaction between H2O2 and metal ions (Fe2+ or Cu2+) through Fenton reactions at or close to its site of formation. In a similar reaction to that needed for oxygen to generate ROS, reactive nitrogen intermediates are successive 1-electron reduction products of NO (NO•) [18]. NO, which is an important signaling molecule, is generated by three isoforms of NO synthase (NOS) that can be found in different subcellular compartments, including the plasma membrane, Golgi apparatus, mitochondria, cytosol, or peroxisomes [19,20,21]. Each NOS isoform is predominantly found in a specific tissue or context: NOS1 is also named neuronal NOS (nNOS) because it is constitutively expressed in neural tissue; NOS3 is also named endothelial NOS (eNOS), as it is mostly found in endothelial cells; NOS2 is also named inducible NOS (iNOS), as it is upregulated by pro-inflammatory factors [22]. As NO plays a key role in vascular homeostasis and neural activity, it cannot be considered a toxic RNS; however, its reaction with O2•− generates peroxynitrite (ONOO−), which is a powerful oxidant [23]. Accordingly, when NO is inefficiently removed and superoxide anion production is elevated, the consequent generation of ONOO−can damage many biological molecules, such as proteins, lipids, and nucleic acids [23].
2.2. Inflammation
Inflammation is a protective response against injury, infection, or other harmful stimuli. An inflammatory state is a common scenario in IRDs [3]. The most important retinal immune cells are the microglial cells, which are responsible for maintaining retinal homeostasis and mediating the inflammatory response in the retina. Additionally, macroglial cells, which include Müller cells and astrocytes, also participate to preserve retinal health [24]. A balance is maintained between pro-inflammatory and anti-inflammatory stimuli under healthy conditions; however, in degenerating tissue, a plethora of pro-inflammatory molecules are secreted, first by microglia and later by Müller cells and astrocytes, changing their primary defensive response into a chronic inflammatory condition that aggravates the already-poor retinal health [3].
The various harmful stimuli are detected by retinal immune cells through engagement with pattern recognition receptors, including pathogen-associated molecular patterns and damage-associated molecular patterns, which respond by upregulating myriad inflammatory genes [25]. Four classes of pathogen recognition receptor families have been described to date: Toll-like receptors, C-type lectin receptors, retinoic acid-inducible gene (RIG)-I-like receptors, and NOD-like receptors [26]. The activation of these receptors triggers a change in retinal microglia morphology, from a normal, highly ramified morphology to an amoeboid morphology, and also modifies their secretory phenotype to pro-inflammatory or anti-inflammatory [27]. Similar to other degenerative CNS diseases, the major contributors to IRD-related inflammation and cell death are TNF-𝛼 and interleukin (IL)-1. TNF-𝛼 is a key factor secreted in the retina by activated microglia and macrophages [25] and can trigger different cell-death mechanisms, including apoptosis, pyroptosis, necroptosis, and parthanatos [25,28].
The most common pathways that are activated in IRDs are the nuclear factor kappa-beta (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), and mitogen-activated protein kinase (MAPK) signaling pathways, ultimately leading to the release of pro-inflammatory molecules [28]. The NF-κB signaling pathway is stimulated through different receptor subsets, including pro-inflammatory cytokines, growth factors, lipopolysaccharide (LPS), and antigen receptors, which activate the IkB–kinase complex. This activation, in turn, triggers the phosphorylation, ubiquitination and degradation of IkB proteins, releasing the p50 and p65 subunits, which translocate to the nucleus and activate the transcription of pro-inflammatory genes [29,30,31]. Alterations in NF-κB expression have been reported in different retinal degeneration conditions [28,29]. Activation of the JAK/STAT signaling pathway, through STAT phosphorylation by dimerized JAK, has also been reported to be involved in many neurodegenerative diseases, including RP. Activated STAT is translocated to the nucleus, where it regulates the expression of numerous genes. IL-6 is one of the best-known activators of the JAK1/STAT3 pathway in macrophages [32,33,34,35]. Finally, the MAPK family (p38-MAPK, c-Jun N-terminal kinase -JNK, and extracellular signal-regulated kinases-ERK1/2) also plays an important role in retina cell survival and apoptosis, and a variety of cytokines can activate this pathway, leading to the release of neuroinflammatory cytokines [36,37,38].
2.3. Effects of Oxidative Stress and Inflammation in Inherited Retinal Dystrophies
The retina is one of the most metabolically active tissues in the body and is exposed to high levels of light and oxygenation. Accordingly, the RONS flux needs to be a perfectly regulated process under steady-state conditions. Oxidative stress occurs when the balance between RONS formation and its removal is disrupted, which activates inflammation and cell-death pathways, and retinal degeneration. It has been demonstrated that oxidative stress plays a central role not only in the most common eye diseases, such as glaucoma [39,40], age-related macular degeneration (AMD) [41,42], and diabetic retinopathy (DR) [43], but also in IRDs [44].
IRDs are characterized by the progressive degeneration of the retina, the retinal pigment epithelium (RPE), and the choriocapillaris, the vascular source of nutrients and oxygen. A total of 280 genes have been directly related to retinal dystrophies to date, with photoreceptors and RPE cells serving as the main carriers of the mutations [6]. While there are common mechanisms through which oxidative stress and inflammation trigger retinal neurodegeneration in these retinopathies, affecting cellular metabolism, cell signaling and homeostasis, it is still unknown whether oxidative stress is the main cause of the pathology, or whether it is a secondary contributor to its progression [45].
Retinal degeneration in IRDs involves inflammation, oxidative stress and cell death. In this situation, a non-ocular stimulus that stimulates inflammation can exacerbate photoreceptor cell death, which worsens the degenerative process. This was shown for P23H rats (an RP model with a mutation in the rhodopsin gene) administered systemically with LPS, which increased the expression levels of several inflammation-related genes such as TNF-𝛼, IL-1𝛼, IL-1𝛽 and caspases-3 and -8 [46]. Other factors, including a high-fat diet, can worsen the disease progression in rd10 mice (a model of autosomal RP whose mutation in phosphodiesterase 6 (PDE6b) is the same as that found in patients with RP) through the increased expression of inflammatory mediators such as glycogen synthase kinase-3β (GSK-3β), NF-κB and IL-6, phospho-STAT3/STAT3 and IL-1α [35].
2.3.1. Purinergic Signaling Activation
Purinergic signaling, particularly through the P2X7 receptor (P2X7R), plays a fundamental role in the evolution of the retinal degenerative process [47]. Most purinergic receptor subtypes are expressed in the mammalian retina. P2X7R can be found in the RPE, astrocytes, microglia, Müller cells, and in pericyte-containing retinal microvessels [48,49,50,51,52,53]. The expression of P2X7R has also been reported in the synaptic terminals of cones and rods, the inner plexiform layer, and retinal ganglion cells [51,52,54]. P2X7R is an ATP-gated ion channel that, when activated by ATP secreted from neurons or glial cells, leads to the activation of microglial cells, which release pro-inflammatory cytokines that help to extend the gliosis (cellular response to injury) to surrounding tissue [3,47,55,56]. When overactivated, P2X7R mediates the formation of wide plasma membrane pores that contribute to calcium overload and cytotoxicity. The P2X7 pore is also associated with the activation of the inflammasome and with the inflammasome-dependent cell-death pathway [57], leading to the release of pro-inflammatory cytokines and ROS by macrophages and microglia [58]. In the P23H rat model of RP, inflammasome activation was found to be a major cause of cone photoreceptor death, mediated by P2X7R [59]. In the rd1 mouse model of RP, the inhibition of P2X receptor signaling delays photoreceptor degeneration [60].
2.3.2. Cell Death
Apoptosis
For many years, apoptosis was considered to be the only mechanism of programmed cell death, whereas necrosis was defined as an unregulated process. However, new programmed cell-death mechanisms have been described for IRDs, with oxidative stress playing a major role in their induction [28,61]. The intracellular machinery responsible for apoptosis involves a family of caspase proteases, which are synthesized in the cell as inactive precursors (or procaspases) and are activated by either extracellular or intracellular stimuli. As an intrinsic apoptosis pathway, elevated intracellular oxidative stress up-regulates pro-apoptotic markers such as Bax family members, which induce the expression and activation of caspases- 3, 6, 7 and 9. By contrast, the extrinsic pathway is activated by members of the TNF receptor family that are also modulated by oxidative stress and inflammation mediators, inducing the expression and activation of caspases- 3, 6, 7, and 8 [28]. Both extrinsic and intrinsic activation lead to DNA fragmentation and cytoplasm degradation, ultimately promoting cell death [61].
Necroptosis
Although traditionally classified as a type of uncontrolled cell death process, different types of regulated necrosis that trigger cell death have been reported in retinal dystrophies, including necroptosis, pyroptosis, parthanatos and ferroptosis [61]. Necroptosis is induced by the TNF-α pathway and is mediated by the interaction between protein kinase-1 receptor (RIPK1) and RIPK3. When caspases are inactivated, the formation of the RIPK1/RIPK3 necroptosis complex activates the mixed-lineage kinase domain-like (MLKL) protein, which promotes plasma membrane permeability. In the context of RP, RIPK-mediated programmed necrosis not only plays a critical role in inducing cell death in RPE and cone photoreceptors, but also promotes retinal inflammation during retinal degeneration [62].
Parthanatos
Several authors suggest that parthanatos contributes to retinal neurodegeneration in different RP models [63]. Photoreceptor cell death mediated by parthanatos begins with an oxidative stress or inflammatory stimulus that triggers the activation of poly-ADP-ribose polymerase (PARP) and Ca2+-dependent cysteine proteinases (calpains). Subsequently, the release of apoptosis-inducing factor (AIF) from mitochondria to the cytoplasm ultimately results in DNA fragmentation [64,65]. Under physiological conditions, cells have different mechanisms to regulate parthanatos. However, in a scenario of retinal neurodegeneration, the upregulation of PARP activity and cGMP signaling, together with cytosolic Ca2+ overload, culminates in cell death [66].
Pyroptosis
Whereas necroptosis and parthanatos are caspase-independent mechanisms of cell death, pyroptosis occurs upon the activation of pro-inflammatory caspases [67]. Pyroptosis promotes cellular lysis by disturbing the electrochemical gradient and the osmotic potential of cellular membranes. Following inflammasome activation, caspase-1 cleaves and activates the gasdermin (GSDM) family of pore-forming proteins, of which gasdermin D (GSDMD) is the main pore-forming executioner in the plasma membrane [67]. This inflammatory-induced cell death mechanism has been described in different neurodegenerative diseases, such as Alzheimer’s disease [68]. Moreover, there is evidence of its possible involvement in photoreceptors and RPE cell death in experimental IRDs models [69]. However, the cellular mechanisms by which it occurs are unknown and further investigation is needed.
Ferroptosis
Ferroptosis is another cell-death mechanism associated with CNS disease and has recently been linked to retinal degenerative processes in experimental RP models [70,71]. As the name suggests, this programmed cell death pathway is dependent on iron, and is induced by the oxidation of polyunsaturated fatty acids (PUFAs) that are present in lipid bilayer membranes. Iron has been described to act as a catalyst in the Fenton reaction (where H2O2 is converted to ·OH radicals), triggering a free-radical chain reaction and resulting in PUFA oxidation or degradation [72]. The iron-dependent oxidation of PUFAs causes mitochondrial alterations and cell membrane damage, which promotes cell death. In this line, it has been proposed that the dysregulation of heme or iron homeostasis due to variations in a gene encoding a heme-transporter protein is a cause of RP [73]. Accordingly, defects in iron metabolism not only could promote ferroptosis, but can also induce retinal degeneration.
2.3.3. Autophagy/Mitophagy and Mitochondrial Effects
Autophagy is an essential mechanism in the retina to ensure correct retinal development function and tissue homeostasis by removing damaged cell components [74,75,76]. In the context of IRDs, autophagy has mostly been studied in photoreceptors and RPE cells, likely due to its implications in the visual cycle [77]. Autophagic activity is involved in the degradation of the visual pigments and in adaptation to circadian rhythms and is essential to the maintenance of protein concentrations that are implicated in the visual cycle [77]. Moreover, in RPE cells, autophagy degrades lipofuscin (age pigment) aggregates and vesicles that contain the photoreceptor outer segment membranes after shedding [78].
Beyond its role in retinal cell homeostasis, autophagy is also activated under oxidative stress conditions. It is a regulated catabolic process where damaged organelles such as mitochondria (termed mitophagy), misfolded proteins or waste products of cellular metabolism are internalized in autophagosomes, to be later degraded through fusion with lysosomes. The activation of autophagy requires the inhibition of the nutrient sensor molecular target of rapamycin (mTOR) and the activation of the energy sensor 5-AMP-activated protein kinase (AMPK). The formation and elongation of the autophagosome requires the participation of different proteins, including ATG proteins, BECLIN1 and LC3. The fusion of autophagosomes containing dysfunctional cargo with a lysosome allows for the degradation or recycling of the content [74].
The role of autophagy in the retina and its implications for retinal degeneration has been studied in several different experimental models [79,80,81]. Autophagy appears to be blocked in rd10 mice, suggesting that its activation could play a neuroprotective role [78]. By contrast, studies in P23H rats revealed that the upregulation of autophagy could be related to an increase in photoreceptor death and proteasome blockage [82,83]. Therefore, autophagy likely plays a dual role: maintaining retinal homeostasis in healthy conditions and participating in retinal degeneration processes in disease states.
2.3.4. Lipid Peroxidation
Lipid peroxidation is an important oxidative-stress-related event associated with retinal damage and pathogenesis [44]. It is a metabolic pathway that can be over-activated not only under cellular stress, but also under chronic light exposure, inducing photooxidative damage [84,85,86,87]. Mechanistically, RONS accumulation promotes the oxidation of unsaturated lipids, especially PUFAs present in the lipid bilayer membranes of the cells, resulting in their oxidative degradation to a variety of products.
Photoreceptors contain large quantities of PUFAs, especially in their outer segment membranes. An increase in lipid peroxidation products in cones was reported in a pig model of RP [61]. Moreover, because RPE cells are responsible for photoreceptor outer segment shedding, the accumulation of lipid protein aggregates (i.e., lipofuscin) and lipid peroxidation products (i.e., acrolein and 4-hydroxynonnenal (4-NHE)) has been suggested to contribute to retinal degeneration in some IRDs, such as Best or Stargardt diseases [88,89,90]. There is a close relationship between the increase in lipid peroxidation processes and the activation of different cell death pathways in retinal dystrophies. Lipid peroxidation not only induces apoptosis and autophagy [91], but it has recently been demonstrated that lipid peroxidation products react with iron molecules in RP, which promotes photoreceptor cell death by ferroptosis [70,71].
2.3.5. Nucleic Acid Damage
Nuclear DNA is less vulnerable than other DNA structures to increases in RONS; however, it can be directly damaged by a chemical attack from purine and pyrimidine bases and deoxyribose sugars [23]. Moreover, RONS accelerates the shortening of chromosome telomeres [44]. By contrast, the close proximity of mitochondrial DNA to ROS generation in the inner mitochondrial membrane undoubtedly increases its vulnerability to oxidation and damage. In this line, the upregulation of DNA polymerase gamma and 8-oxoguanine-DNA-glycosylase, which are selectively localized in the mitochondria of the photoreceptor synaptic terminals and exert a DNA-repair function, has been proposed as a pharmacologic strategy to promote photoreceptors’ rescue in degenerative retinal diseases [92].
For decades, it has been proposed that RNA oxidation may occur during the early stages of degeneration in neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease [93,94]. As RNA is generally single-stranded, it is considered more unstable than DNA. In addition, RNA comprises about 80–90% of the total nucleic acids in cells and is localized in the cytoplasm, adjacent to mitochondria, where more free radicals are generated. Thus, RNA is considered more vulnerable to oxidative damage than DNA or proteins. Hydroxyl radicals are the major RNA oxidants and 8-hydroxyguanosine (8-OHG) is the most prevalent oxidized nucleobase (C-8 position of deoxyguanosine) in RNA by •OH [93]. RNA oxidative damage affects the translational process during protein synthesis, causing truncated, misfolded and/or aggregated proteins [93]. Furthermore, alterations in the expression profile of long non-coding RNAs and short non-coding RNAs (such as some micro-RNAs) have been directly related to the increase in oxidative stress, not only in the neural retina, but also in the RPE [58].
2.3.6. Protein Damage and Endoplasmic Reticulum Stress
The ER acts as a quality-control organelle that retains and degrades misfolded proteins. Increases in intracellular RONS induce protein metabolism and structure disorders through the oxidation of and reduction in cysteine residues, the formation of protein–protein cross-linkages, or by post-translational modifications [94]. These changes can lead to secondary effects, including protein fragmentation, aggregation, and unfolding [95] which result not only in the loss of protein function but also in a decline in cellular antioxidant capacity and the degradation of oxidized or misfolded proteins by the proteasome or autophagy processes. In the retina, under uncontrollable oxidative and nitro-oxidative stress conditions, the ER can activate cell-death pathways, such as apoptosis [96], as a protective response, promoting the neurodegenerative process. Moreover, ER stress has been suggested to be a primary cause of photoreceptor death associated with rhodopsin mutations [97].
3. Therapeutic Strategies to Reduce Oxidative Stress and Inflammation: Antioxidants and Anti-Inflammatory Agents and Other Strategies
At present, no pharmacological agent has been proven to be effective in preventing or restoring vision loss in IRDs. Accordingly, new therapies, including gene- and cell-based therapies, are urgently needed. Gene therapy could treat the disease or block its progression, depending on the moment of treatment and the gene mutation. Voretigene neparvovec is indicated for the treatment of patients with biallelic RPE65 mutations associated in the interim; other strategies are being investigated to protect the retina and slow disease progression [98]. Neuroprotection aims to stop photoreceptor loss during IRD. Treatments that do not specifically target the molecular mechanisms of the disease could be used not only in IRDs, but also in other acquired retinal degeneration diseases, such as AMD or DR, the main causes of visual loss. Other ancillary treatments could be used to treat IRD complications such as macular edema or cataracts. In this section, we will specifically focus on neuroprotective interventions that slow the vision loss caused by oxidative stress and pro-inflammatory processes associated with retinal disease.
Neuroprotective strategies include a broad array of approaches that promote neuron survival by preserving their structure and function. A multitude of neuroprotective agents, including antiapoptotic, antioxidant and anti-inflammatory drugs, and rehabilitative methods such as exercise and electrical stimulation, have proven effective in animal models of retinal degeneration and in patients with reduced vision [3,99,100]. While none of these agents have been approved by the US Food and Drug Administration as drugs with neuroprotective effects, numerous compounds have been tested in research and in (pre)clinical studies [101,102]. While oxidative mechanisms underlie the pathophysiology of many IRDs, the sources and impact of RONS can depend on the pathogenic mutation, which will determine the effect of different drugs in preventing cone death and prolonging rod survival [44]. Mutations that cause the misfolding of transmembrane proteins involved in photoreception or phototransduction, such as rhodopsin, arrestin, PDE6 and TULP1, are associated with increased ER stress. The ER responds to the burden of misfolded proteins by activating the unfolded protein response (UPR), a complex intracellular mechanism that regulates the expression of multiple genes to maintain ER homeostasis and prevent further cell damage [103]. Genetic and pharmacologic interventions to modulate ER stress and UPR-associated transcriptional programs are promising technologies to treat retinal degeneration [104]. For example, the overexpression of chaperones such as BiP/Grp78 [105] and the downregulation of the UPR transcription factor ATF4 [106] have beneficial effects in cell culture or animal models of IRDs. Importantly, RPE cells show altered microRNA (miRNA) expression profiles under oxidative stress, and many of the dysregulated miRNAs are modulators of the expression of the causative genes of IRDs, such as KLHL7, RDH11, CERKL, AIPL1 and USH1G [107].
While the existence and negative effects of oxidative stress in the etiopathogenesis of retinal dystrophies is clear, the translation from animal research into the clinic has many challenges. IRDs are rare diseases affecting a small fraction of the population, and there are countless genetic and phenotypic variations. In addition, after rod cell death, cones are chronically exposed to oxidative stress, which makes the design of long-term treatments necessary. Dietary supplementation and treatments with antioxidant and/or anti-inflammatory compounds have been shown to have beneficial effects in retinal dystrophies [3,44]. Below, we discuss potential candidates with promising neuroprotective properties in retinal disease. Table 1 lists most of the proven therapeutic interventions for IRDs and other retinal damage models, including AMD, DR and ganglion cell damage. Table 2 describes different clinical trials (CTs), which are ongoing and completed.
3.1. Antioxidants and Anti-Inflammatory Agents
3.1.1. N-Acetylcysteine
N-acetylcysteine (NAC) is clinically used as a mucolytic agent and as an antidote to acetaminophen toxicity. It is a sulfhydryl-containing liposoluble molecule that can penetrate cell membranes and has oral bioavailability. NAC is derived from the thiol-containing amino acid L-cysteine. It is a precursor of glutathione, and thus enhances glutathione S-transferase activity. NAC has a direct antioxidant effect via its reactive sulfhydryl agent; it can neutralize ROS by itself and can also break thiolated proteins, releasing free thiols and reduced proteins with antioxidant effects, such as mercaptoalbumin. NAC can stabilize protein structures by crosslinking cysteine disulfide molecules [445,446]. Its systemic administration results a significant intraocular concentration, although there is variability in its absorption. NAC has been studied in different eye conditions, including IRD, AMD, DR, glaucoma and Sjogren’s disease. A phase 1 randomized trial demonstrated that NAC is safe and well-tolerated and may improve sub-optimally functioning macular cones in advanced forms of RP [122].
Several CTs have been conducted to assess the effect of NAC in RP. The FIGHT-RP1 study (NCT03063021) was a phase-1 dose-escalation trial to test the effects of oral NAC in patients with RP. The primary outcome was safety, and secondary outcomes were assessed visual function, including best-corrected visual acuity (BCVA) and macular sensitivity using microperimetry. Patients were treated with escalating doses of NAC (600, 1200 or 1800 mg twice daily for 3 months); the highest NAC dose reduced the risk of macular sensitivity loss [121]. In the aforementioned CT, patients receiving NAC were divided into two arms depending on the carbonyl content GSH/GSSG level in aqueous humor. Another goal of FIGHT-RP1 is to study gene expressions that can interfere with NAC efficacy. In patients with idiopathic pulmonary fibrosis, polymorphisms in TOLLIP can influence the outcomes of NAC treatment. In the CT, DNA samples will be collected to identify the modifier genes that can impact cone survival.
The FIGHT-RP1 extension study (NCT04864496), will use NAC 1800 mg twice daily to check safety and tolerability over 2 years of follow-up in patients with moderately advanced RP. Secondary outcomes will be measured, such as BCVA, central sensitivity using microperimetry, changes in the ellipsoid zone, changes in the aqueous GSH/GSSG ratio, and NAC and carbonyl levels. The estimated study completion date is the end of 2025. NAC appears to be well-tolerated, with minimal side-effects. While the most effective dosage is still unclear, its efficacy has been proven in multiple diseases that manifest with oxidative stress. Although similar to other antioxidants, caution needs to be exercised in lung cancer as a result of p53 inhibition [446].
3.1.2. NPI-001 (N-Acetylcysteine Amide)
GMP-grade N-acetylcysteine amide (NPI-001, NACA) is the amide form of NAC manufactured by Nacuity Pharmaceuticals (Fort Worth, TX, USA). Its structure is more lipophilic, which allows for it to permeate cell membranes more than NAC while preserving its antioxidant properties [447,448]. It has demonstrated the ability to cross blood–brain and blood–retinal barriers with therapeutic potential in neurodegenerative diseases [447]. The compound is safe and effective. The SLO-RP study (NCT04355689) is a phase 1, 2 randomized CT using NPI-001 for RP associated with Usher syndrome; in phase 1, NPI-001 250 mg will be compared with placebo.
3.1.3. Thioredoxin
The thioredoxin (TRX) family of oxidoreductases contains the active center cysteine–glycine–proline–cysteine and oxidized cysteine groups. TRXs can protect against oxidative stress and also have anti-inflammatory properties [449,450,451]. Their antioxidant properties are based on the reduction in other proteins by cysteine thiol disulfide exchange [126]. Rod-derived cone viability factor (RdCVF) is a truncated (alternatively spliced) product of NXNL1 (nucleoredoxin-like 1), which is secreted by rods and protects cones from degeneration through its actions as a trophic factor. The loss of rods in IRDs implies the lack of a protective effect of RdCVF, and the exogenous administration of this molecule has therapeutic value in preventing photoreceptor degeneration [452,453]. The dominant protein encoded by NXNL1 is RdCVFL (TRX-like protein RdCVF) an enzymatically active TRX [454,455]. The loss of RdCFVL expression leads to increased oxidative damage, as reported in mice lacking Nxnl1 [456]. In rd mice, TRX can protect against photoreceptor death, activates the GSH system, and partially reduces retinal gliosis [126].
3.1.4. Saffron
Saffron is the dried stigma (part of the pistil) of Crocus sativus L., and has a neuroprotective effect against oxidative damage. Its major constituents, crocin and crocetin, derive from carotenoids, and exert potent antioxidative actions due to multiple C-C bonds. Saffron has a complex mechanism of action beyond its antioxidant activity, as it also stimulates the mechanisms of tissue resilience [457]. Crocetin prevents retinal degeneration secondary to oxidative and ER stress by inhibiting caspase 3 and 9 activity in cell lines and in a mouse model of light retinal damage [458]. Crocin protects cultured photoreceptors from light damage [459]. Crocetin also increases oxygen diffusivity through tissues [460]. Metabolites of this flavonoid also directly bind to DNA, partially changing it to a beta-DNA conformation and protecting the cell from damage [461]. Saffron is also able to modulate gene expression involved in the retina response to light damage, including endothelin 2 and FGF [129].
Saffron supplementation has been tested in the STARSAF02 trial for Stargardt disease (NCT01278277) [427]. In a short-term administration (6 months) study, 31 patients with ABCA4 mutations were treated either with saffron or with placebo. The substance was well-tolerated but no improvement was observed in visual function. The study suggested that saffron may prevent the deterioration of macular flicker electroretinogram (ERG) amplitude, but a long-term study is needed to test its benefits [427]. The authors followed some patients for 36 months outside the period of the CT, finding that long-term supplementation could stabilize visual function, but these results need to be validated. Saffron has been also tested in a CT (NCT00951288) of early AMD, where it was found to stimulate an increase in ERG values against placebo and improve flicker sensitivity [134].
3.1.5. Minocycline
Minocycline is a broad-spectrum, second-generation, semi-synthetic tetracycline with free-radical scavenging properties, and anti-inflammatory, antiapoptotic and neuroprotective properties [462]. While its mechanism of action is not fully understood, it appears to regulate several main enzymes and systems; for example, it downregulates NF-κB [463] and inhibits many enzymes, including iNOS, MMPs, phospholipase A2, caspases, and other proteins involved in apoptosis, including p38-MAPK and poly [ADP] ribose polymerase1 [462]. Minocycline has demonstrated neuroprotective effects in preclinical studies of neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s diseases, amyotrophic lateral sclerosis and multiple sclerosis [462]. As an inhibitor of microglial activation, it has been shown to protect retinal ganglion cells (RGC) in mouse models of glaucoma [163,164]. In CTs with patients with neurodegenerative disorders, its effects have been modest at best [464,465]. At present, it is being tested in phase 2 CTs for treatment of AMD (NCT02564978) and RP (NCT04068207). In a CT testing its potential efficacy for the treatment of macular edema associated with RP, it failed to induce significant changes in mean visual acuity; however, a small but progressive decrease in mean central macular thickness was observed [428]. Minocycline can easily pass through the blood–brain barrier and is generally safe and well-tolerated. Adverse reactions include gastrointestinal distress and photosensitivity, hepatotoxicity, and an exacerbation of pre-existing renal failure; therefore, the monitoring of patients is recommended after 6 months of treatment [466].
3.1.6. Melatonin
Melatonin (N-acetyl-5-methoxytryptamine) is a hormone derived from the essential amino acid tryptophan and is synthesized by numerous organs including the pineal gland and the retina [467]. Melatonin is also found in edible plants and foods, including milk, fruits, vegetables, and fish, and in the medicinal herbs of chamomile (Matricaria chamomilla L.) and St John’s wort (Hypericum perforatum L.), among others [468,469]. Melatonin plays a major role in the regulation of circadian rhythms, in addition to modulating various physiological functions, such as cardiovascular and immune system regulation and retinal function [470]. Melatonin exhibits a high antioxidant capacity, directly acting as a free-radical scavenger, and indirectly enhances antioxidant enzymes, such as CAT, SOD, glutathione reductase, and GPX. Melatonin also suppresses the activity of pro-oxidant enzymes such as NOS and COX-2, and acts as a cell-survival agent by modulating autophagy [471].
Melatonin supplementation (in drinking water) in P23HxLE rats, a model that resembles the clinical features of heterozygous patients with RP, improved visual acuity, contrast sensitivity and retinal electrical activity [168]. It also improved circadian synchronization and increased the levels of CAT and SOD, which further reduced oxidative stress. Therefore, melatonin promotes cell survival, preserves retinal cells, and delays the progression of RP.
The intravitreal administration of melatonin is also effective in ameliorating photoreceptor degeneration induced by the DNA-alkylating agent N-methyl-N-nitrosourea (MNU). Melatonin mediated the protective effects on visual function by modulating apoptotic cascades and alleviating oxidative stress [172]. Specifically, the retinas from mice treated with melatonin after MNU-induced damage showed lower levels of lipid peroxidation (reduced malondialdehyde, MDA) and DNA oxidation (decreased nuclear 8-OHdG) and higher levels of SOD and manganese SOD (MnSOD) than untreated counterparts [172].
3.1.7. Curcumin
Curcumin is a yellow polyphenolic pigment derived from the rhizome of turmeric (Curcuma longa L.) with well-known anti-inflammatory and antioxidant properties that are secondary to the inhibition of TNF-dependent NF-κB and pathways that produce ROS. Other actions include the downregulation of COX-2 and the inhibition of the pro-inflammatory enzyme 5-lipoxygenase, thus reducing the biosynthesis of inflammation products such as leukotrienes and lipid mediators. Curcumin also lowers the production of inflammatory cytokines including TNF, IL-1, IL-6. IL-8, iNOS and interferon-γ, and downregulates the expression of genes involved in apoptosis and cellular proliferation and inflammation [472]. Curcumin has pleotropic effects in different diseases, including gastrointestinal, cardiovascular, rheumatological and neurodegenerative diseases, including ocular pathologies (for a review, see [473]).
The effects of curcumin have been studied in cell lines and animal models of different retinal diseases, including IRDs. However, its clinical use is limited by its poor solubility and oral bioavailability, and different delivery mechanisms (liposomes and nanoparticles) are currently being studied [474,475]. Curcumin was protected against retinal degeneration in rat models of light-induced retinal degeneration by inhibiting NF-κB signaling [193]. In different retina cell lines, curcumin protected against H2O2 damage, altered the expression of H2O2-modulated miRNAs, increased the levels of antioxidant genes and reduced the expression of angiotensin II type 1 receptor, VEGF and NF-κB [476]. Curcumin also exhibits anti-protein aggregate activities in vitro, and improves retinal structure and function in P23H rats [191].
3.1.8. Carotenoids
The retina stores antioxidant products as macular pigments, including lutein, zeaxanthin and meso-zeaxanthin (converted from lutein in the retina) [477]. Zeaxanthin is present in the central region, whereas lutein concentration increases with radial distance from the fovea and meso-zeaxanthin levels decrease [477,478]. Lutein/zeaxanthin are related to static indicators of visual function [479], absorb blue light, scavenge ROS using their double bounds, protect membrane phospholipids against UV-induced peroxidation, induce phase-II antioxidant enzymes, and reduce lipofuscin formation [480]. Lutein suppresses NF-κB activation and the expression of iNOS and COX-2 [480]. The role of lutein or zeaxanthin in AMD has been studied in some depth. Genes controlling SR-B1 (a lutein-binding protein in the retina) and high-density lipoprotein levels predisposed to AMD, supporting the involvement of both lutein and the cholesterol pathway in AMD development [480]. Nevertheless, the Age-Related Eye Disease Study 2 (AREDS2) trial (NCT00345176) was unable to demonstrate protective effects for lutein or zeaxanthin in patients with advanced AMD [481]. Lutein and zeaxanthin improve retinal antioxidant capacity by modulating the expression of G-protein-coupled receptors and growth factors in rats [225] by diminishing inflammation in models of uveitis, choroidal neovascularization, diabetes, or ganglion cell damage, providing photoreceptor protection and reducing ER stress in rodent models of RP [224].
3.1.9. Catechins
Catechins are polyphenolic antioxidants that are found in many plants. (−)-Epigallocatechin gallate (EGCG) is the most abundant catechin-based flavonoid in green tea (Camellia sinensis L.). Its multiple actions include antioxidant, anti-inflammatory, neuro- and cardioprotective, antimicrobial and anti-carcinogenic actions, and it thus has therapeutic potential against different human diseases [482]. EGCG has an important scavenging activity and protects against H2O2--triggered oxidative damage [483]. EGCG is hydrophilic, has a low molecular weight, and can cross the blood–retina barrier to reach the retinal cells and the entire ocular structure [484]. Overall, these properties make EGCG a potential treatment for retinal neurodegeneration. EGCG administration induced Sod1 and Gpx3 expression in the rat retina but suppressed Cat expression [484]. EGCG has shown retinal protection in models of retinal damage, including RP models, by reducing the levels of peroxidized lipids and nitrosative damage, and increasing total antioxidant capacity. These effects might be related to different mechanisms, including an antagonist’s effect on the NMDA receptor as a glutamate receptor antagonist, and reducing glutamate excitotoxicity by increasing Ca2+ influx through a signaling cascade involving protein kinase C [485,486,487]. EGCG modulates the gene expression of pro-oxidant and antioxidant enzymes and inhibits the expression of p38-MAPK and NF-κB. Its anti-inflammatory activity is related to the regulation of pro-inflammatory and anti-inflammatory factors, including interleukins, chemokines, TNF-α, NF-κB and COX-2 [482,488].
3.1.10. Wolfberry-Derived Zeaxanthine Dipalmitate
Wolfberry or Lycium barbarum (commonly known as goji berries) has been used for thousands of years in traditional Chinese medicine and is distinguished by its high antioxidant potential. The bioactive compounds of this exotic “berry” (polysaccharides, carotenoids or flavonoids, and phenolic compounds, among others) have been shown to modulate antioxidant, anti-inflammatory and antiapoptotic pathways, and to exhibit neuroprotective effects in retinal diseases in animal models and human subjects [489]. The carotenoid zeaxanthin dipalmitate [(3R,3′R)-3,3′-O-dipalmitoyl-β-carotene] is a major constituent in wolfberry and is considered as a promising supplement to delay RP, as evidenced by its beneficial morphological and functional effects in the retina of rd10 mice [490]. The mechanisms of action of zeaxanthin dipalmitate include the modulation of numerous genes in the STAT3, CCL2 and MAPK pathways, ultimately ameliorating the developing inflammatory processes (for a review, see [431]).
Lycium barbarum L. has recently been administered to patients with RP in a 12-month intervention CT (NCT02244996) [317], and was found to preserve the macular layer.
3.1.11. (Z)-7,4′-Dimethoxy-6-hydroxy-aurone-4-O-b-glucopyranoside
(Z)-7,4′-Dimethoxy-6-hydroxy-aurone-4-O-b-glucopyranoside (DHAG) is a compound isolated from the endophytic fungus Penicillium citrinum of mangrove plants with potent neuroprotective activity against oxidative damage [491]. The administration of DHAG in the rd10 mouse model by daily gavage from postnatal day 12 (P12) to P33 (rod cell death begins around P18 and is almost complete by P45) significantly improved photoreceptor survival [322]. DHAG reduced photoreceptor cell apoptosis in the rd10 retina by increasing the abundance of the antiapoptotic protein Bcl-2 and reducing the pro-apoptotic protein Bax and caspase 3/9 activities. In addition, DHAG activated Nrf2, which further triggered the expression of antioxidant genes to restore oxidative homeostasis, evidenced by the decreased protein expression of NOX1, reduced levels of MDA and ROS, and increased SOD activity and GSH levels. Furthermore, DHAG treatment inhibited inflammatory responses in rd10 mouse retinas, characterized by the decreased gene expression of Il1b, Il6 and Tnfa, and pro-inflammatory expression of NF-κB and p38-MAPK.
3.1.12. NRF2
NRF2 is the master transcriptional regulator of antioxidative responses in multiple tissues, including the retina. Adeno-associated virus (AAV) has emerged as the vector of choice for gene delivery to the retina, and several laboratories have tested the therapeutic potential of AAV-mediated gene overexpression to protect against oxidative stress. AAV-mediated Nrf2 gene delivery in the neural retina and RPE promoted the survival of cones and RPE cells and retention of vision in various mouse models of RP [492] and acute nerve damage [493]. Similarly, the subretinal injection of human oxidation stress resistance-1 (AAV8-hOXR1) in rd1 mice significantly improved photoreceptor survival and light response, delaying retinal degeneration [494]. OXR1 is a key player in protecting against oxidative stress and exerts its neuroprotective functions by directly upregulating the expression of myriad antioxidant genes, or by controlling the transcription factors that regulate genes involved in oxidative stress-resistance [495].
3.1.13. Multi-Target Iron Chelators
Combination therapies that target complementary mechanisms to promote synergism have shown promise for retinal diseases. Multi-target iron-chelating compounds, including VK28, M30 and VAR10303, have been shown to exert neuroprotective effects in the rd10 mouse retina via synergistic antioxidant, anti-inflammatory and antiapoptotic mechanisms, which morphologically and functionally preserve photoreceptors, consequently, maintaining the visual function in RP retinas [323,324].
3.1.14. Mitochondrial Nutrients and Metabolic Intermediates
Photoreceptor cells are highly metabolically active and require sufficient supplies of ATP, NADPH, and metabolites to ensure proper functioning. Accordingly, mitochondrial dysfunction and metabolic dysregulation play critical roles in the pathogenesis of retinal degenerative disorders [496,497]. Many genes associated with IRDs directly or indirectly affect the metabolic pathways and mitochondrial function. Importantly, the death of rod photoreceptors, which constitute approximately 70% of all cells in the retina of most mammals, causes an increase in the release of RONS in the outer retina, resulting in damage to cones [498]. Many efforts have been made to prolong cone survival and improve visual acuity after prominent rod loss. Recently, an α-arrestin family member protein encoded by Txnip was shown to be beneficial in RP retinas (AAV-delivery of Txnip) by rescuing cone cells through enhancing their lactate catabolism and mitochondrial health [499]. Along the same line, mitochondrial cofactors, also known as mitochondrial nutrients, have been utilized to alleviate retinal disease and protect retinal cells against the pro-oxidant and dysmetabolic state. Examples of these are alpha-lipoic acid, coenzyme Q10 and carnitine [500]. Numerous studies have shown that exogenous creatine is very effective in protecting cells from oxidative stress damage [501], and dietary creatine supplementation augments cone survival in rd1 retinas and improves visual function [327]. It is now recognized that many interdependent cellular metabolism and energy pathways are defective in IRDs. Thus, new treatments aiming to strengthen or restore the impaired mitochondrial function or to replenish metabolic insufficiencies by dietary supplementation are receiving increasing interest [502,503].
3.2. Antiapoptotic Agents
3.2.1. Synthetic Bile Acids: Ursodeoxycholic Acid and Tauroursodeoxycholic Acid
Ursodeoxycholic acid (UDCA) and its taurine conjugate derivative tauroursodeoxycholic acid (TUDCA) are bile acids with proven neuroprotective [365,504] and antiapoptotic, anti-inflammatory and antioxidant [505] actions. TUDCA exerts antiapoptotic effects in different models of retinal degeneration, not only photoreceptor loss secondary to IRD, oxidative stress or retinal detachment [361,363,364,365,366,367,504,506,507,508] but also in glaucoma [369] and other ocular diseases [509]. Its antiapoptotic actions are thought to involve the suppression of caspase-dependent and -independent pathways and reductions in ER stress. The main limitations of TUDCA as a potential therapy are the high doses that are needed and the limited bioavailability to the retina, which can be solved using different drug-delivery systems [507] with good results in animal models [510].
UDCA and TUDCA have been used in several models of neurodegenerative disease, and were found to preserve anatomy and function. Three CTs have evaluated their safety and efficacy to date, albeit for amyotrophic lateral sclerosis [511,512,513], with all showing that the drugs were well-tolerated and may have utility in slowing disease progression. To date, there is only one phase-1 CT with UDCA registered for the treatment of rhegmatogenous retinal detachment (NCT02841306).
3.2.2. Progesterone
Progesterone and other steroid hormones such as estrogen have demonstrated neuroprotective effects in animal models of IRD [514]. Progesterone increases the expression of antiapoptotic proteins (Bcl-2, Bcl-xL) and reduces the expression of pro-apoptotic factors (Bax, Bad, caspase-3) [515]. It also exhibits anti-inflammatory actions by decreasing microglial and macrophage activation [516,517] and reduces the levels of inflammatory cytokines [518]. It can also diminish excitotoxicity [519,520].
Progesterone has been shown to preserve photoreceptor degeneration in animal models of RP and light-induced damage [380,381,383]. However, its translation to human studies is challenging, especially regarding doses, which might limit the development of CTs for IRDs. Nevertheless, progesterone has been tested in a phase-3 CT for traumatic brain injury (NCT00822900, Progesterone for the Treatment of Traumatic Brain Injury III [ProTECT]), but with no evident benefits over placebo.
3.3. Other Compounds (Nutraceuticals and Compounds with Mixed Mechanisms of Action)
3.3.1. Vitamin A and E
Vitamins A and E have vital functions in photoreceptor maintenance. Given the evidence that patients with RP who take vitamin A and E and other nutrients show an attenuated decrease in ERG responses, several CTs have been launched to test the effectiveness of vitamin supplementation. One CT was developed using high doses of vitamin A to test for improvements in cone function measured with ERG (NCT00065455). The study was completed in 2009, but the results have not been published. Another CT investigated supplementation with both vitamins A and E (NCT00000114) [425]. These results were published in 1993. The authors treated 601 patients and found a beneficial effect of 15,000 IU/d of vitamin A on the disease course, but an adverse effect of vitamin E (400 IU/d) [439]. The same authors conducted a second CT in patients receiving vitamin A (15,000 IU/d) supplemented with DHA (1200 mg/d), which did not slow the disease course over a 4-year period [440].
Finally, the same authors tested the addition of lutein (12 mg/d) to patients with RP receiving vitamin A (NCT00346333), and reported that lutein slowed the loss of midperipheral visual field in non-smoking patients [430].
3.3.2. Docosahexaenoic Acid
DHA is the major polyunsaturated fatty acid in the retina, accounting for 50–70% of the fatty acids of the photoreceptor outer segment. DHA has an important role in the maintenance of retinal structure and function [521], not only in neurons but also in retinal vessels, and is necessary for phototransduction. DHA is also related to the increased production of GSH [430].
DHA metabolism is believed to be altered in retinopathies, due to pathogenic mutations in ABCA4, although no positive results have been found in patients treated with DHA supplements. For example, MacDonald and Sieving published the results of DHA supplementation in 11 patients with Stargardt disease, reporting no changes in macular function [441].
Several CTs have evaluated the effect of DHA supplementation in X-linked RP (XLRP). Hoffman and colleagues tested the ability of supplemented DHA (400 mg/d) to increase blood DHA levels and slow disease progression in 23 patients with XLRP. Results showed elevated DHA blood levels in patients receiving DHA, but no change in cone function measured by ERG versus placebo, although some benefits in rod/cone function were observed in subset analysis [522]. The same authors developed a phase-2, 4-year, follow-up CT (NCT00100230) including 78 patients receiving placebo or DHA. In this study, DHA was unable to slow the loss of ERG function in XLRP [436], although an analysis of ancillary visual function outcomes revealed a reduced rate of progression in dark-adapted thresholds and visual field sensitivities [438]. The authors suggested improvements in the study design, with a higher sample size and longer trial period, targeting a higher DHA blood level. Along this line, the authors found minor gastrointestinal discomfort in patients receiving 30 mg/kg DHA, and plasma and red blood cell DHA levels increased 4.4- and 3.6-fold, respectively, at year 4 [437]. A similar CT (NCT00004827) was designed to evaluate the potential of DHA supplementation to normalize DHA levels in red blood cells and retard the progression of visual function loss in patients with XLRP. The trial is completed but the results have not yet been published.
In a sub-group analysis of their original study, Berson et al. followed 221 patients receiving either vitamin A or vitamin A + DHA, finding no changes in the course of degeneration [440]. However, in those patients taking vitamin A prior to entry in the trial, the addition of DHA slowed the course of the disease for the first 2 years [440], but these differences were not preserved in years 3 and 4.
Macular degeneration omega-3 study (MADEOS) is a CT in the recruiting phase, testing the efficacy of omega-3 fatty acids in AMD and ABCA4-associated retinopathy.
Schwartz et al. performed a systematic review to evaluate the effect of vitamin A and fish oils in preventing the progression of RP [422]. They concluded that there is no clear evidence for treatment with either DHA alone or associated with vitamin A in the studied randomized CTs.
3.4. Drugs Interacting with Vitamin A in ABCA4-Associated Retinopathy
ABCA4-associated retinopathy is a highly prevalent IRDs. While no approved therapy is available to date, several therapeutic approaches have been investigated, including cell- and gene-based strategies. Different compounds with a variety of actions have been tested for therapeutic intervention in ABCA4-associated retinopathy [523]; some are related to antioxidant and anti-inflammatory actions, and others are based on the ability to halt/slow lipofuscin accumulation. Most studies use high doses of oral administration to reach the retina, which may lead to secondary effects. Here, we include not only antioxidants and inflammatory drugs, but also visual cycle modulators.
A common target for these approaches is N-retinylidene-N-retinylethanolamine (A2E), a major component of lipofuscin and a by-product of the retinoid visual cycle. The alcohol–dehydrogenase-inhibitor 4-methylpyrazole (4-MP) can inhibit the visual cycle in rodents and has been used in animal models to delay dark adaptation. 4-MP has been tested in a CT (NCT00346853) but failed to delay dark adaptation [442]; however, it did prevent the accumulation of lipofuscin by delaying the processing of vitamin A derivatives.
Another drug tested to prevent lipofuscin formation is ALK-001 (C20-D3-retinyl acetate), which is a deuterated form of vitamin A, slowing down vitamin A dimerization and A2E production. In mice, it diminishes the formation of A2E dimers and slows lipofuscinogenesis [524]. Based on these results, a phase-1 CT was launched in 40 healthy subjects (NCT02230228). There is an ongoing extension phase-2 CT examining the tolerability and effects of ALK-001 on Stargardt disease (TEASE), with 140 patients affected by ABCA4-associated retinopathy (NCT04239625), and another CT is in the recruiting phase (NCT02402660). The same drug is being used in a phase-3 study of geographic atrophy (NCT03845582).
3.4.1. Emixustat
The accumulation of toxic retinal by-products generated in the visual cycle by RPE65 can drive blindness. The generation of these products, including A2E, can thus be modulated by blocking RPE65 activity, which is a rate-limiting step in the visual cycle. Two such RPE65 inhibitors are emixustat and MB001. Emixustat hydrochloride (also known as ACU-4429) is a non-retinoid drug that exerts an inhibitory effect on RPE65, thus reducing the accumulation of vitamin A-based toxins. The inhibition should, however, be partial, to permit chromophore regeneration [525].
Emixustat and fenretinide, another visual cycle modulator, have been tested for the treatment of non-exudative AMD by oral administration [526]. In terms of safety, in a phase-1, placebo-controlled study (NCT00942240), emixustat had minimal systemic adverse events in healthy individuals, with 67% showing mild ocular side effects, which disappeared after withdrawal [527]. In patients with AMD, emixustat had a dose-dependent, reversible effect on rod function with dose-related mild and moderate ocular adverse events (NCT01002950) [528]. In a phase 2b/3 CT (NCT01802866, SEATTLE), emixustat failed to reduce the growth of the geographic atrophy [529]. Emixustat is currently being evaluated as a potential treatment in ABCA4-related retinopathy. The CT NCT03033108 (Pharmacodynamic Study of Emixustat Hydrochloride in Subjects with Macular Atrophy Secondary to Stargardt Disease) is examining 23 patients with Stargardt disease, treated with emixustat and assessed for ERG changes and adverse effects. Likewise, the CT NCT03772665 (SeaSTAR) is a phase-3 study including 194 patients (for 24 months), with an estimated study completion date of June 2022.
3.4.2. Zimura
The complement cascade is key to the immune response. Zimura (also known as avacincaptad pegol) is an aptamer that can inhibit the activity of complement factor C5 [530]. The proteolysis of C5 generates two fragments: C5a, an anaphylotoxin, and C5b, needed for the assembly of the membrane attack complex (MAC). The MAC can form a channel that penetrates the cell membrane of pathogens or damaged host cells, leading to cell death. Both C5a and MAC are implicated in tissue damage secondary to inflammation [531,532]. The inhibition of proteolytic C5 activation is a potential therapeutic approach in diseases that involve the overactivation or dysregulation of the complement pathway, such as certain retinal degenerative diseases [533].
Intravitreal administration of Zimura is being studied in both non-exudative AMD (NCT04435366) and in a phase-2 CT associated with ranibizumab in exudative AMD. NCT03364153 is a phase-2 CT used to evaluate the safety and efficacy of Zimura in 120 patients with Stargardt disease.
3.4.3. Soraprazan
Soraprazan is a fast-acting inhibitor of H+,K+-ATPase and is used in gastroesophageal reflux disease [534]. It is a small molecule that can remove lipofuscin from RPE cells. It has been tested in an animal model of lipofuscinogenis [535] and a multi-national, multi-center, double-masked, placebo-controlled, proof-of-concept trial is evaluating the safety and efficacy of oral soraprazam in Stargardt disease (EudraCT 2018-001496-20).
3.4.4. STG-001
STG-001 is an indirect visual cycle modulator that reduces plasma concentrations of retinol-binding protein 4 (RBP4), the major retinol transporter, and slows down the visual cycle and the accumulation of cytotoxic retinoids in the retina. RBP4 is correlated not only with retinal disease but also with cardiovascular diseases, insulin resistance related to type 2 diabetes mellitus, and obesity. Two RBP4 antagonists are currently in CTs. One of them, STG-001, is being tested in patients with Stargardt disease in a phase-2a CT investigating two different doses of STG-001 (NCT04489511).
4. Conclusions
Most IRDs, irrespective of the cause of the disease, result in photoreceptor loss and vision deterioration. Oxidative stress is a major contributor to cell death in photoreceptor cells, as they are constantly exposed to light and have a high metabolic demand to maintain normal function. Importantly, photoreceptors are post-mitotic cells and are unable to repair molecular damage through cell division, making these cells particularly vulnerable to molecular damage, metabolic alterations, genetic modifications, and environmental factors. Cell loss in IRDs leads to inflammatory responses that exacerbate the degenerative processes of the retina. A multitude of treatments aim to prevent, halt, or slow down the neuronal degeneration underlying IRDs by boosting the endogenous antioxidant defense system and/or providing exogenous antioxidant agents. Similarly, a number of anti-inflammatory therapies are being investigated.
Maintaining cell health is imperative to allow for the activation of intrinsic cytoprotective mechanisms to combat stress or damage and prevent disease progression. The healthier the status of retinal cells, the better the response to therapeutical approaches. Numerous therapeutic interventions are being tested at present to maintain cellular homeostasis by enhancing oxidative defenses and mitochondrial function to prevent ROS-induced damage linked to dysregulated signaling pathways. These strategies focus on targeting ROS production, aiming to decrease its levels and promote cell protection. However, several challenges need to be overcome to successfully achieve this goal. A key point to consider when treating IRDs is that there is an unstable balance between the antioxidant effect of the administered compounds and the total antioxidant capacity of the patients. Moreover, the additive effect of different drugs with different mechanisms of action does not always result in enhanced cell survival, possibly due to the interactions between different cellular pathways. Finally, the causative mutation of the disease can promote different responses to the same drugs in patients.
New or improved modalities of gene- and cell-based therapies are being developed to treat IRDs. Gene therapy has proven efficacy and is already in clinical use. The functional recovery of cells that have been genetically modified is very encouraging for patients; however, inflammation and microglia activation through oxidative stress persists in untreated areas, potentially compromising the long-term success of the therapy. A degenerated retina with a complete loss of vision needs to be healthy to maintain non-visual functions such as the control of circadian rhythms and pupil contraction. Thus, the maintenance of retinal cell health using neuroprotective compounds, in combination with gene therapy, may be key to long-term therapy success. The ability to maintain inflammation within normal ranges and finding the correct balance between endogenous and exogenous antioxidants in patients with IRDs are exciting challenges.
A successful therapeutical approach to IRDs will require a profound knowledge of the etiopathogenesis of the disease, the causative mutation, and the efficacy of drug treatments. Potential drug compounds should display good safety and tolerability profiles and be capable of crossing the blood–retinal barrier (providing suitable bioavailability in the retina) without the need for high systemic doses or, alternatively, be suitable for intraocular use.
Conceptualization, I.P., V.M., L.C. and N.C.; methodology, I.P., V.M., L.C. and N.M.-G.; investigation, O.K., X.S.-S. and C.S.-C.; resources, writing—original draft preparation, L.F.-S. and P.L.; writing—review and editing, I.P., V.M., N.M.-G., L.C. and N.C.; funding acquisition, I.P. and N.C. All authors have read and agreed to the published version of the manuscript.
Not applicable.
Not applicable.
Not applicable.
The authors declare no conflict of interest.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Antioxidant, antiapoptotic and anti-inflammatory compounds with demonstrated efficacy in retinal disease. The table compiles proven therapeutic interventions for inherited and induced retinal damage models.
Compounds | Animal Models of Photoreceptor Degeneration, Diabetic Retinopathy or Retinal Ganglion Cell Death | Clinical Use in |
---|---|---|
Antioxidant and |
||
N-acetylcysteine | IRD and retinal damage models: |
IRD: |
N-acetylcysteine
|
IRD and retinal damage models: |
IRD: |
Thioredoxin | IRD and retinal damage models: |
|
Saffron | IRD and retinal damage models: |
IRD: |
Minocycline | IRD and retinal damage models: |
IRD: |
Melatonin | IRD and retinal damage models: |
AMD: |
Curcumin | IRD and retinal damage models: |
AMD: |
Quercetin | IRD and retinal damage models: |
|
Lutein (L)
|
IRD and retinal damage models: |
AMD: |
Catechins | IRD and retinal damage models: |
AMD: |
Resveratrol | IRD and retinal damage models: |
NCT02321176 (pharmacokinetics of resveratrol in the eye) |
Dietary antioxidants | IRD and retinal damage models: |
AMD: |
Fructus lycii | IRD and retinal damage models: |
IRD: |
Alpha-lipoic acid | IRD and retinal damage models: |
AMD: |
(Z)-7,4′-Dimethoxy-6-hydroxy-aurone-4-O- β -glucopyranoside (DHAG) | IRD and retinal damage models: |
|
Multi-target iron chelators | IRD and retinal damage models: |
|
Creatine | IRD and retinal damage models: |
Gyrate atrophy with hyperornithinaemia (4 patients) [ |
Sulforaphane | IRD and retinal damage models: |
|
NOS inhibitors | IRD and retinal damage models: |
|
Sigma1R ligand (+)-
|
IRD and retinal damage models: |
|
Norbixin
|
IRD and retinal damage models: |
|
(3R)-5,6,7-trihydroxy-3-isopropyl-3-methylisochroman-1-one | IRD and retinal damage models: |
|
Glycyrrhizic acid/Glycyrrhizin | IRD and retinal damage models: |
|
Antiapoptotic agents | ||
Tudca | IRD and retinal damage models: |
Others: |
Rasagiline | IRD and retinal damage models: |
Others: |
Norgestrel/
|
IRD and retinal damage models: |
|
Proinsulin | IRD and retinal damage models: |
Others: |
Nutraceuticals and other compounds | ||
Anthocyanin
|
IRD and retinal damage models: |
Metabolism and Clearance of Cyanidin 3 Glucoside: NCT01106729 |
4-Phenylbutyric acid | IRD and retinal damage models: |
IRD: |
Celastrol | IRD and retinal damage models: |
|
Salvia miltiorrhiza Bunge | IRD and retinal damage models: |
|
Vitamin A and/or E | Vitamin A |
Vitamin A |
Abbreviations: IRD, inherited retinal dystrophies; AMD, age-related macular degeneration; DR, diabetic retinopathy; CNV, choroidal neovascularization; RP, retinitis pigmentosa; LCA, Leber Congenital Amaurosis; STZ, streptozotocin, MNU, N-methyl-N-nitrosourea; NMDA, N-methyl-D-aspartate; L, Lutein; Z, Zeaxanthin; NAC, N-acetylcysteine; DHA, docosahexaenoic acid; NOS, nitric oxide synthase.
Clinical trials in IRD using molecules with antioxidant, antiapoptotic, anti-inflammatory and/or visual cycle modulator properties.
Compound | Mechanism | Disease | Participants |
Follow-Up Time | Trial ID | Phase/ |
References | Results |
---|---|---|---|---|---|---|---|---|
N-acetylcysteine
|
Antioxidant |
RP | 30 | 10 m | NCT03063021 |
1/ |
Campochiaro et al., 2020 and |
NAC is safe and well-tolerated |
NAC | RP | 30 | 6 m | NCT04864496 | 2/Active | |||
NACA
|
Antioxidant |
Usher syndrome | 48 | 24 m | NCT04355689 |
1, 2/ |
||
Saffron | Neuroprotective and antioxidant effects | Stargardt Disease | 30 (31) | 6 m | NCT01278277 |
1,2/ |
Piccardi et al., 2019 [ |
No detrimental effects on ERG and visual acuity |
Minocyclin | Anti-inflammatory, antiapoptotic and neuroprotective |
RP | 35 | 24 wk | NCT04068207 | 2/ |
||
Minocyclin | Cystoid macular edema associated with RP | 7 | 12 m | NCT02140164 | 1, 2/ |
Cukras et al., 2017 [ |
Well tolerated. No significant changes in mean visual acuity. Small but progressive decrease in mean central macular thickness. | |
Lutein | Removes ROS; protection against photo-oxidative stress |
RP | 34 | 48 wk | NCT00029289 | 1,2/ |
Bahrami et al., 2006 [ |
Lutein supplementation improves visual field |
Lutein in patients receiving vitamin A | RP | 240 | 5 yr | NCT00346333 | 3/ |
Berson et al., 2010 [ |
12 mg/d of lutein slows visual field loss among nonsmoking patients with RP with vitamin A | |
Lycium
|
Antioxidative, anti-inflammatory, and antiapoptotic |
RP | 50 (42) | 1 yr | NCT02244996 | NA/ |
Chan et al., 2019 and Vidović et al., 2022 [ |
Preservation of photopic vision |
4-Phenylbutyric acid | ER stress-regulated transmembrane protein | Achromatopsia | 2 | 6 m | NCT04041232 | Early phase 1/ |
||
Vitamin A | Improvement in cone photoreceptor |
RP (RHO1 mutation) | 10 (5 RP) | 6 wk | NCT00065455 | 1/ |
||
Vitamin A and/or
|
RP | 601 (572) | 4 yr. | NCT00000114 | 3/ |
Berson et al., 1993 [ |
Beneficial effect of 15,000 IU/d of vitamin A |
|
Vitamin A | RP | 5 yr | NCT00000116 | 3/ |
||||
Vitamin A | Choroideremia | 10 | 8 m | NCT05045703 (DARC) | Not yet recruiting | |||
QLT091001 | Replaces chromophore in visual cycle | Leber congenital amaurosis (mutation RPE65, LRAT) | 32 | 12 m | NCT01014052 |
1b/ |
Scholl H et al., 2015 [ |
Improvements in visual field and/or visual acuity. Cortical activation |
QLT091001
|
Leber congenital amaurosis (mutation RPE65, LRAT) | 27 | 12 m | NCT01521793 |
1/ |
Scholl et al., 2015 [ |
Sustained visual improvements | |
QLT091001 | ADRP (RPE65 mutation) | 5 | 12 m | NCT01543906 | 1/ |
|||
ALK-001 | Chemically modified vitamin A (replacement of vitamin A) | Healthy |
40 | 4 wk | NCT02230228 | 1/ |
||
ALK-001 | Stargardt |
140 | 24 m | NCT02402660 |
2/ |
|||
ALK-001 | Stargardt |
140 | 24 m | NCT04239625 |
2/ |
|||
DHA (docosahexaenoic acid; omega 3) | Key cell |
X-linked RP | 221 (208) | 4 yr | NCT00100230 | 2/ |
Hoffman et al., 2014 [ |
|
DHA | X-linked RP | 46 | 3 yr | NCT00004827 | 2/ |
For review see: Schwartz et al., 2020 [ |
||
DHA | Usher Syndrome | 100 | NCT00004345 | NA/ |
||||
DHA in
|
RP | 221 | 4 yr | NA | Berson et al., 2004 [ |
No improvement with DHA in patients with RP receiving Vit A 4 yr |
||
DHA | Stargardt or Stargardt-like Macular |
22 | 15 m | NCT00060749 | 1/ |
MacDonald & Sieving 2018 [ |
||
DHA | Stargardt and dry AMD | 32 | 24 wk | NCT03297515 |
NA/ |
|||
Hydroxychloroquine | Targets |
P23H-RHO RP | 12 | 18 m | NCT04120883 | 1, 2/ |
||
4-Methylpyrazole (4-MP) (alcohol dehydrogenase inhibitor) | Slows down processing of |
Healthy |
10 | 6 wk | NCT00346853 | 1/ |
Jurgensmeier et al., 2007 [ |
4-MP does not inhibit |
Emixustat | RPE65 |
Stargardt | 23 | 1 m | NCT03033108 |
2A |
No SAES |
|
Emixustat | Stargardt | 194 | 2 yr | NCT03772665 | 3/Active | |||
Soraprazan | H,K+-ATPase inhibitor |
Stargardt | 90 | 12 m | EudraCT 2018-001496-20 | 2/Active | ||
Zimura (avacincaptad pegol) | Aptamer that inhibits the activity of complement factor C5 | Stargardt 1 | 120 | 18 m | NCT03364153 | 2b/ |
||
STG-001 | RBP4 |
Stargardt 1 | 10 | 4 wk | NCT04489511 | 2a |
||
L-DOPA | Upregulates PDEF |
RP | 50 | 5 yr | NCT02837640 | 2/NA | ||
Valproic acid | Neuroprotective |
ADRP | 90 | 52 wk | NCT01233609 | 2/ |
Birch et al., 2018 [ |
No efficacy was found |
Valproic acid | RP | 200 | 48 wk | NCT01399515 | 2/ |
|||
Dunaliella
|
Beta carotene | RP | 34 | 1 yr | NCT01256697 | NA/ |
Rotenstreich et al., 2013 [ |
Increase |
Dunaliella Bardawil powder | RP in |
30 | 72 wk | NCT02018692 | 1, 2/Not yet recruiting | |||
Dunaliella Bardawil powder | RP | 100 | 72 wk | NCT01680510 | 2, 3/ |
|||
rhNGF
|
Neuroprotection | RP | 50 | 48 wk | NCT02110225 | 1, 2/ |
||
Cannabis (cannabidiol:THC, 1:1) | Neuroprotection | RP | 50 | 3 h. | NCT03078309 | 1/ |
||
NP-001 (oral) | Inactivates macrophages. Anti-inflammatory | Usher syndrome | 48 | 24 m. | NCT04355689 (SLO RP) | 1, 2/ |
Abbreviations: RP, retinosis pigmentaria; ADRP, autosomal dominant retinosis pigmentaria; h, hour(s); wk, week(s); m, month(s); yr, year(s). Clinical trial information was retrieved from ClinicalTrials.gov (
References
1. Kolb, H.; Nelson, R.; Ahnelt, P.; Cuenca, N. Cellular Organization of the Vertebrate Retina. Prog. Brain. Res.; 2001; 131, pp. 3-26. [DOI: https://dx.doi.org/10.1016/s0079-6123(01)31005-1] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11420950]
2. Cuenca, N.; Ortuño-Lizarán, I.; Sánchez-Sáez, X.; Kutsyr, O.; Albertos-Arranz, H.; Fernández-Sánchez, L.; Martínez-Gil, N.; Noailles, A.; López-Garrido, J.A.; López-Gálvez, M. et al. Interpretation of OCT and OCTA Images from a Histological Approach: Clinical and Experimental Implications. Prog. Retin. Eye Res.; 2020; 77, 100828. [DOI: https://dx.doi.org/10.1016/j.preteyeres.2019.100828] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31911236]
3. Cuenca, N.; Fernández-Sánchez, L.; Campello, L.; Maneu, V.; de la Villa, P.; Lax, P.; Pinilla, I. Cellular Responses Following Retinal Injuries and Therapeutic Approaches for Neurodegenerative Diseases. Prog. Retin. Eye Res.; 2014; 43, pp. 17-75. [DOI: https://dx.doi.org/10.1016/j.preteyeres.2014.07.001] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25038518]
4. Kolb, H.; Nelson, R.; Ahnelt, P.; Ortuño-Lizarán, I.; Cuenca, N. The Architecture of the Human Fovea. Webvision: The Organization of the Retina and Visual System; Kolb, H.; Fernandez, E.; Nelson, R.; Jones, B.W. University of Utah Health Sciences Center: Salt Lake City, UT, USA, 2020.
5. Sahel, J.-A.; Marazova, K.; Audo, I. Clinical Characteristics and Current Therapies for Inherited Retinal Degenerations. Cold Spring Harb. Perspect. Med.; 2015; 5, a017111. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25324231][DOI: https://dx.doi.org/10.1101/cshperspect.a017111]
6. Daiger, S.P. RetNet, the Retinal Information Network; The University of Texas Health Science Center: Houston, TX, USA, 2022; Available online: https://sph.uth.edu/retnet/home.htm (accessed on 1 February 2022).
7. Fernández-Sánchez, L.; Lax, P.; Noailles, A.; Angulo, A.; Maneu, V.; Cuenca, N. Natural Compounds from Saffron and Bear Bile Prevent Vision Loss and Retinal Degeneration. Molecules; 2015; 20, pp. 13875-13893. [DOI: https://dx.doi.org/10.3390/molecules200813875]
8. Lax, P.; Ortuño-Lizarán, I.; Maneu, V.; Vidal-Sanz, M.; Cuenca, N. Photosensitive Melanopsin-Containing Retinal Ganglion Cells in Health and Disease: Implications for Circadian Rhythms. Int. J. Mol. Sci.; 2019; 20, 3164. [DOI: https://dx.doi.org/10.3390/ijms20133164]
9. Sies, H.; Cadenas, E. Oxidative Stress: Damage to Intact Cells and Organs. Philos. Trans. R. Soc. Lond. B Biol. Sci.; 1985; 311, pp. 617-631. [DOI: https://dx.doi.org/10.1098/rstb.1985.0168]
10. Moldogazieva, N.T.; Mokhosoev, I.M.; Feldman, N.B.; Lutsenko, S.V. ROS and RNS Signalling: Adaptive Redox Switches through Oxidative/Nitrosative Protein Modifications. Free Radic. Res.; 2018; 52, pp. 507-543. [DOI: https://dx.doi.org/10.1080/10715762.2018.1457217]
11. Holmström, K.M.; Finkel, T. Cellular Mechanisms and Physiological Consequences of Redox-Dependent Signalling. Nat. Rev. Mol. Cell Biol.; 2014; 15, pp. 411-421. [DOI: https://dx.doi.org/10.1038/nrm3801]
12. di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxidative Med. Cell. Longev.; 2016; 2016, 1245049. [DOI: https://dx.doi.org/10.1155/2016/1245049]
13. Sies, H.; Jones, D.P. Reactive Oxygen Species (ROS) as Pleiotropic Physiological Signalling Agents. Nat. Rev. Mol. Cell Biol.; 2020; 21, pp. 363-383. [DOI: https://dx.doi.org/10.1038/s41580-020-0230-3] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32231263]
14. Kowaltowski, A.J.; de Souza-Pinto, N.C.; Castilho, R.F.; Vercesi, A.E. Mitochondria and Reactive Oxygen Species. Free Radic. Biol. Med.; 2009; 47, pp. 333-343. [DOI: https://dx.doi.org/10.1016/j.freeradbiomed.2009.05.004] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19427899]
15. Schrader, M.; Fahimi, H.D. Peroxisomes and Oxidative Stress. Biochim. Biophys Acta; 2006; 1763, pp. 1755-1766. [DOI: https://dx.doi.org/10.1016/j.bbamcr.2006.09.006] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17034877]
16. Siegenthaler, K.D.; Sevier, C.S. Working Together: Redox Signaling between the Endoplasmic Reticulum and Mitochondria. Chem. Res. Toxicol.; 2019; 32, pp. 342-344. [DOI: https://dx.doi.org/10.1021/acs.chemrestox.8b00379] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30721036]
17. Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide Dismutases: Dual Roles in Controlling ROS Damage and Regulating ROS Signaling. J. Cell Biol.; 2018; 217, pp. 1915-1928. [DOI: https://dx.doi.org/10.1083/jcb.201708007]
18. Nathan, C. Specificity of a Third Kind: Reactive Oxygen and Nitrogen Intermediates in Cell Signaling. J. Clin. Investig.; 2003; 111, pp. 769-778. [DOI: https://dx.doi.org/10.1172/JCI200318174]
19. Fulton, D.; Fontana, J.; Sowa, G.; Gratton, J.-P.; Lin, M.; Li, K.-X.; Michell, B.; Kemp, B.E.; Rodman, D.; Sessa, W.C. Localization of Endothelial Nitric-Oxide Synthase Phosphorylated on Serine 1179 and Nitric Oxide in Golgi and Plasma Membrane Defines the Existence of Two Pools of Active Enzyme. J. Biol. Chem.; 2002; 277, pp. 4277-4284. [DOI: https://dx.doi.org/10.1074/jbc.M106302200]
20. Choi, J.-Y.; Nam, S.-A.; Jin, D.-C.; Kim, J.; Cha, J.-H. Expression and Cellular Localization of Inducible Nitric Oxide Synthase in Lipopolysaccharide-Treated Rat Kidneys. J. Histochem. Cytochem.; 2012; 60, pp. 301-315. [DOI: https://dx.doi.org/10.1369/0022155411436131]
21. Zhou, L.; Zhu, D.-Y. Neuronal Nitric Oxide Synthase: Structure, Subcellular Localization, Regulation, and Clinical Implications. Nitric Oxide; 2009; 20, pp. 223-230. [DOI: https://dx.doi.org/10.1016/j.niox.2009.03.001]
22. Nathan, C.; Xie, Q.W. Nitric Oxide Synthases: Roles, Tolls, and Controls. Cell; 1994; 78, pp. 915-918. [DOI: https://dx.doi.org/10.1016/0092-8674(94)90266-6]
23. Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric Oxide and Peroxynitrite in Health and Disease. Physiol. Rev.; 2007; 87, pp. 315-424. [DOI: https://dx.doi.org/10.1152/physrev.00029.2006] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17237348]
24. Murakami, Y.; Ishikawa, K.; Nakao, S.; Sonoda, K.-H. Innate Immune Response in Retinal Homeostasis and Inflammatory Disorders. Prog. Retin. Eye Res.; 2020; 74, 100778. [DOI: https://dx.doi.org/10.1016/j.preteyeres.2019.100778] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31505218]
25. Kaur, G.; Singh, N.K. The Role of Inflammation in Retinal Neurodegeneration and Degenerative Diseases. Int. J. Mol. Sci.; 2021; 23, 386. [DOI: https://dx.doi.org/10.3390/ijms23010386] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35008812]
26. Takeuchi, O.; Akira, S. Pattern Recognition Receptors and Inflammation. Cell; 2010; 140, pp. 805-820. [DOI: https://dx.doi.org/10.1016/j.cell.2010.01.022]
27. Kinuthia, U.M.; Wolf, A.; Langmann, T. Microglia and Inflammatory Responses in Diabetic Retinopathy. Front. Immunol.; 2020; 11, 564077. [DOI: https://dx.doi.org/10.3389/fimmu.2020.564077]
28. Olivares-González, L.; Velasco, S.; Campillo, I.; Rodrigo, R. Retinal Inflammation, Cell Death and Inherited Retinal Dystrophies. Int. J. Mol. Sci.; 2021; 22, 2096. [DOI: https://dx.doi.org/10.3390/ijms22042096]
29. Zeng, H.-Y.; Tso, M.O.M.; Lai, S.; Lai, H. Activation of Nuclear Factor-KappaB during Retinal Degeneration in Rd Mice. Mol. Vis.; 2008; 14, pp. 1075-1080.
30. Hayden, M.S.; Ghosh, S. Shared Principles in NF-KappaB Signaling. Cell; 2008; 132, pp. 344-362. [DOI: https://dx.doi.org/10.1016/j.cell.2008.01.020]
31. Dresselhaus, E.C.; Meffert, M.K. Cellular Specificity of NF-κB Function in the Nervous System. Front. Immunol.; 2019; 10, 1043. [DOI: https://dx.doi.org/10.3389/fimmu.2019.01043] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31143184]
32. Murray, P.J. The JAK-STAT Signaling Pathway: Input and Output Integration. J. Immunol.; 2007; 178, pp. 2623-2629. [DOI: https://dx.doi.org/10.4049/jimmunol.178.5.2623]
33. Samardzija, M.; Wenzel, A.; Aufenberg, S.; Thiersch, M.; Remé, C.; Grimm, C.; Samardzija, M.; Wenzel, A.; Aufenberg, S.; Thiersch, M. et al. Differential Role of Jak-STAT Signaling in Retinal Degenerations. FASEB J.; 2006; 20, pp. 2411-2413. [DOI: https://dx.doi.org/10.1096/fj.06-5895fje] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16966486]
34. Ly, A.; Merl-Pham, J.; Priller, M.; Gruhn, F.; Senninger, N.; Ueffing, M.; Hauck, S.M. Proteomic Profiling Suggests Central Role Of STAT Signaling during Retinal Degeneration in the Rd10 Mouse Model. J. Proteome Res.; 2016; 15, pp. 1350-1359. [DOI: https://dx.doi.org/10.1021/acs.jproteome.6b00111] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26939627]
35. Kutsyr, O.; Noailles, A.; Martínez-Gil, N.; Maestre-Carballa, L.; Martinez-Garcia, M.; Maneu, V.; Cuenca, N.; Lax, P. Short-Term High-Fat Feeding Exacerbates Degeneration in Retinitis Pigmentosa by Promoting Retinal Oxidative Stress and Inflammation. Proc. Natl. Acad. Sci. USA; 2021; 118, e2100566118. [DOI: https://dx.doi.org/10.1073/pnas.2100566118] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34667124]
36. Wu, J.; Gao, G.; Shi, F.; Xie, H.; Yang, Q.; Liu, D.; Qu, S.; Qin, H.; Zhang, C.; Xu, G.-T. et al. Activated Microglia-Induced Neuroinflammatory Cytokines Lead to Photoreceptor Apoptosis in Aβ-Injected Mice. J. Mol. Med.; 2021; 99, pp. 713-728. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33575853][DOI: https://dx.doi.org/10.1007/s00109-021-02046-6]
37. Klettner, A. Oxidative Stress Induced Cellular Signaling in RPE Cells. Front. Biosci.; 2012; 4, 392. [DOI: https://dx.doi.org/10.2741/s275]
38. Agca, C.; Gubler, A.; Traber, G.; Beck, C.; Imsand, C.; Ail, D.; Caprara, C.; Grimm, C. P38 MAPK Signaling Acts Upstream of LIF-Dependent Neuroprotection during Photoreceptor Degeneration. Cell Death Dis.; 2013; 4, e785. [DOI: https://dx.doi.org/10.1038/cddis.2013.323]
39. Yamada, E.; Himori, N.; Kunikata, H.; Omodaka, K.; Ogawa, H.; Ichinose, M.; Nakazawa, T. The Relationship between Increased Oxidative Stress and Visual Field Defect Progression in Glaucoma Patients with Sleep Apnoea Syndrome. Acta Ophthalmol.; 2018; 96, pp. e479-e484. [DOI: https://dx.doi.org/10.1111/aos.13693]
40. Aslan, M.; Cort, A.; Yucel, I. Oxidative and Nitrative Stress Markers in Glaucoma. Free. Radic. Biol. Med.; 2008; 45, pp. 367-376. [DOI: https://dx.doi.org/10.1016/j.freeradbiomed.2008.04.026]
41. Toma, C.; de Cillà, S.; Palumbo, A.; Garhwal, D.P.; Grossini, E. Oxidative and Nitrosative Stress in Age-Related Macular Degeneration: A Review of Their Role in Different Stages of Disease. Antioxidants; 2021; 10, 653. [DOI: https://dx.doi.org/10.3390/antiox10050653]
42. Kaarniranta, K.; Uusitalo, H.; Blasiak, J.; Felszeghy, S.; Kannan, R.; Kauppinen, A.; Salminen, A.; Sinha, D.; Ferrington, D. Mechanisms of Mitochondrial Dysfunction and Their Impact on Age-Related Macular Degeneration. Prog. Retin. Eye Res.; 2020; 79, 100858. [DOI: https://dx.doi.org/10.1016/j.preteyeres.2020.100858]
43. Kang, Q.; Yang, C. Oxidative Stress and Diabetic Retinopathy: Molecular Mechanisms, Pathogenetic Role and Therapeutic Implications. Redox Biol.; 2020; 37, 101799. [DOI: https://dx.doi.org/10.1016/j.redox.2020.101799] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33248932]
44. Domènech, B.E.; Marfany, G. The Relevance of Oxidative Stress in the Pathogenesis and Therapy of Retinal Dystrophies. Antioxidants; 2020; 9, 347. [DOI: https://dx.doi.org/10.3390/antiox9040347] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32340220]
45. Forman, H.J.; Zhang, H. Targeting Oxidative Stress in Disease: Promise and Limitations of Antioxidant Therapy. Nat. Rev. Drug Discov.; 2021; 20, pp. 689-709. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34194012][DOI: https://dx.doi.org/10.1038/s41573-021-00233-1]
46. Noailles, A.; Maneu, V.; Campello, L.; Lax, P.; Cuenca, N. Systemic Inflammation Induced by Lipopolysaccharide Aggravates Inherited Retinal Dystrophy. Cell Death Dis.; 2018; 9, 350. [DOI: https://dx.doi.org/10.1038/s41419-018-0355-x] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29500424]
47. Reichenbach, A.; Bringmann, A. Purinergic Signaling in Retinal Degeneration and Regeneration. Neuropharmacology; 2016; 104, pp. 194-211. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25998275][DOI: https://dx.doi.org/10.1016/j.neuropharm.2015.05.005]
48. Freitas, H.R.; de Melo Reis, R.A. Glutathione Induces GABA Release through P2X7R Activation on Müller Glia. Neurogenesis; 2017; 4, e1283188. [DOI: https://dx.doi.org/10.1080/23262133.2017.1283188] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28229088]
49. Kawamura, H.; Sugiyama, T.; Wu, D.M.; Kobayashi, M.; Yamanishi, S.; Katsumura, K.; Puro, D.G. ATP: A Vasoactive Signal in the Pericyte-Containing Microvasculature of the Rat Retina. J. Physiol.; 2003; 551, pp. 787-799. [DOI: https://dx.doi.org/10.1113/jphysiol.2003.047977]
50. Pannicke, T.; Fischer, W.; Biedermann, B.; Schädlich, H.; Grosche, J.; Faude, F.; Wiedemann, P.; Allgaier, C.; Illes, P.; Burnstock, G. et al. P2X7 Receptors in Müller Glial Cells from the Human Retina. J. Neurosci.; 2000; 20, pp. 5965-5972. [DOI: https://dx.doi.org/10.1523/JNEUROSCI.20-16-05965.2000]
51. Sanderson, J.; Dartt, D.A.; Trinkaus-Randall, V.; Pintor, J.; Civan, M.M.; Delamere, N.A.; Fletcher, E.L.; Salt, T.E.; Grosche, A.; Mitchell, C.H. Purines in the Eye: Recent Evidence for the Physiological and Pathological Role of Purines in the RPE, Retinal Neurons, Astrocytes, Müller Cells, Lens, Trabecular Meshwork, Cornea and Lacrimal Gland. Exp. Eye Res.; 2014; 127, pp. 270-279. [DOI: https://dx.doi.org/10.1016/j.exer.2014.08.009]
52. Vessey, K.A.; Fletcher, E.L. Rod and Cone Pathway Signalling Is Altered in the P2X7 Receptor Knock Out Mouse. PLoS ONE; 2012; 7, e29990. [DOI: https://dx.doi.org/10.1371/journal.pone.0029990]
53. Wurm, A.; Pannicke, T.; Iandiev, I.; Francke, M.; Hollborn, M.; Wiedemann, P.; Reichenbach, A.; Osborne, N.N.; Bringmann, A. Purinergic Signaling Involved in Müller Cell Function in the Mammalian Retina. Prog. Retin. Eye Res.; 2011; 30, pp. 324-342. [DOI: https://dx.doi.org/10.1016/j.preteyeres.2011.06.001] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21689780]
54. Puthussery, T.; Fletcher, E.L. Synaptic Localization of P2X7 Receptors in the Rat Retina. J. Comp. Neurol.; 2004; 472, pp. 13-23. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15024749][DOI: https://dx.doi.org/10.1002/cne.20045]
55. Dong, L.; Hu, Y.; Zhou, L.; Cheng, X. P2X7 Receptor Antagonist Protects Retinal Ganglion Cells by Inhibiting Microglial Activation in a Rat Chronic Ocular Hypertension Model. Mol. Med. Rep.; 2018; 17, pp. 2289-2296. [DOI: https://dx.doi.org/10.3892/mmr.2017.8137] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29207073]
56. Monif, M.; Burnstock, G.; Williams, D.A. Microglia: Proliferation and Activation Driven by the P2X7 Receptor. Int. J. Biochem. Cell Biol.; 2010; 42, pp. 1753-1756. [DOI: https://dx.doi.org/10.1016/j.biocel.2010.06.021] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20599520]
57. Calzaferri, F.; Ruiz-Ruiz, C.; Diego, A.M.G.; Pascual, R.; Méndez-López, I.; Cano-Abad, M.F.; Maneu, V.; Ríos, C.; Gandía, L.; García, A.G. The Purinergic P2X7 Receptor as a Potential Drug Target to Combat Neuroinflammation in Neurodegenerative Diseases. Med. Res. Rev.; 2020; 40, pp. 2427-2465. [DOI: https://dx.doi.org/10.1002/med.21710] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32677086]
58. Gallenga, C.E.; Lonardi, M.; Pacetti, S.; Violanti, S.S.; Tassinari, P.; di Virgilio, F.; Tognon, M.; Perri, P. Molecular Mechanisms Related to Oxidative Stress in Retinitis Pigmentosa. Antioxidants; 2021; 10, 848. [DOI: https://dx.doi.org/10.3390/antiox10060848] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34073310]
59. Viringipurampeer, I.A.; Metcalfe, A.L.; Bashar, A.E.; Sivak, O.; Yanai, A.; Mohammadi, Z.; Moritz, O.L.; Gregory-Evans, C.Y.; Gregory-Evans, K. NLRP3 Inflammasome Activation Drives Bystander Cone Photoreceptor Cell Death in a P23H Rhodopsin Model of Retinal Degeneration. Hum. Mol. Genet.; 2016; 25, pp. 1501-1516. [DOI: https://dx.doi.org/10.1093/hmg/ddw029]
60. Puthussery, T.; Fletcher, E. Extracellular ATP Induces Retinal Photoreceptor Apoptosis through Activation of Purinoceptors in Rodents. J. Comp. Neurol.; 2009; 513, pp. 430-440. [DOI: https://dx.doi.org/10.1002/cne.21964]
61. Shen, J.; Yang, X.; Dong, A.; Petters, R.M.; Peng, Y.-W.; Wong, F.; Campochiaro, P.A. Oxidative Damage Is a Potential Cause of Cone Cell Death in Retinitis Pigmentosa. J. Cell. Physiol.; 2005; 203, pp. 457-464. [DOI: https://dx.doi.org/10.1002/jcp.20346]
62. Murakami, Y.; Matsumoto, H.; Roh, M.; Suzuki, J.; Hisatomi, T.; Ikeda, Y.; Miller, J.W.; Vavvas, D.G. Receptor Interacting Protein Kinase Mediates Necrotic Cone but Not Rod Cell Death in a Mouse Model of Inherited Degeneration. Proc. Natl. Acad. Sci. USA; 2012; 109, pp. 14598-14603. [DOI: https://dx.doi.org/10.1073/pnas.1206937109]
63. Greenwald, S.H.; Pierce, E.A. Parthanatos as a Cell Death Pathway Underlying Retinal Disease. Adv. Exp. Med. Biol.; 2019; 1185, pp. 323-327. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31884632]
64. Sancho-Pelluz, J.; Arango-Gonzalez, B.; Kustermann, S.; Romero, F.J.; van Veen, T.; Zrenner, E.; Ekström, P.; Paquet-Durand, F. Photoreceptor Cell Death Mechanisms in Inherited Retinal Degeneration. Mol. Neurobiol.; 2008; 38, pp. 253-269. [DOI: https://dx.doi.org/10.1007/s12035-008-8045-9] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18982459]
65. Arango-Gonzalez, B.; Trifunović, D.; Sahaboglu, A.; Kranz, K.; Michalakis, S.; Farinelli, P.; Koch, S.; Koch, F.; Cottet, S.; Janssen-Bienhold, U. et al. Identification of a Common Non-Apoptotic Cell Death Mechanism in Hereditary Retinal Degeneration. PLoS ONE; 2014; 9, e112142. [DOI: https://dx.doi.org/10.1371/journal.pone.0112142] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25392995]
66. Yan, J.; Chen, Y.; Zhu, Y.; Paquet-Durand, F. Programmed Non-Apoptotic Cell Death in Hereditary Retinal Degeneration: Crosstalk between CGMP-Dependent Pathways and PARthanatos?. Int. J. Mol. Sci.; 2021; 22, 10567. [DOI: https://dx.doi.org/10.3390/ijms221910567] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34638907]
67. Shi, J.; Zhao, Y.; Wang, K.; Shi, X.; Wang, Y.; Huang, H.; Zhuang, Y.; Cai, T.; Wang, F.; Shao, F. Cleavage of GSDMD by Inflammatory Caspases Determines Pyroptotic Cell Death. Nature; 2015; 526, pp. 660-665. [DOI: https://dx.doi.org/10.1038/nature15514] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26375003]
68. McKenzie, B.A.; Dixit, V.M.; Power, C. Fiery Cell Death: Pyroptosis in the Central Nervous System. Trends Neurosci.; 2020; 43, pp. 55-73. [DOI: https://dx.doi.org/10.1016/j.tins.2019.11.005] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31843293]
69. Li, J.; Du, W.; Xu, N.; Tao, T.; Tang, X.; Huang, L. RNA-Seq Analysis for Exploring the Pathogenesis of Retinitis Pigmentosa in P23H Knock-In Mice. Ophthalmic Res.; 2021; 64, pp. 798-810. [DOI: https://dx.doi.org/10.1159/000515727]
70. Yang, M.; So, K.-F.; Lam, W.-C.; Lo, A.C.Y. Cell Ferroptosis: New Mechanism and New Hope for Retinitis Pigmentosa. Cells; 2021; 10, 2153. [DOI: https://dx.doi.org/10.3390/cells10082153]
71. Chen, C.; Chen, J.; Wang, Y.; Liu, Z.; Wu, Y. Ferroptosis Drives Photoreceptor Degeneration in Mice with Defects in All-Trans-Retinal Clearance. J. Biol. Chem.; 2021; 296, 100187. [DOI: https://dx.doi.org/10.1074/jbc.RA120.015779]
72. Tan, Q.; Fang, Y.; Gu, Q. Mechanisms of Modulation of Ferroptosis and Its Role in Central Nervous System Diseases. Front. Pharmacol.; 2021; 12, 657033. [DOI: https://dx.doi.org/10.3389/fphar.2021.657033]
73. Shahandeh, A.; Bui, B.V.; Finkelstein, D.I.; Nguyen, C.T.O. Therapeutic Applications of Chelating Drugs in Iron Metabolic Disorders of the Brain and Retina. J. Neurosci. Res.; 2020; 98, pp. 1889-1904. [DOI: https://dx.doi.org/10.1002/jnr.24685] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32643793]
74. Boya, P.; Esteban-Martínez, L.; Serrano-Puebla, A.; Gómez-Sintes, R.; Villarejo-Zori, B. Autophagy in the Eye: Development, Degeneration, and Aging. Prog. Retin. Eye Res.; 2016; 55, pp. 206-245. [DOI: https://dx.doi.org/10.1016/j.preteyeres.2016.08.001] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27566190]
75. Lin, W.; Xu, G. Autophagy: A Role in the Apoptosis, Survival, Inflammation, and Development of the Retina. Ophthalmic Res.; 2019; 61, pp. 65-72. [DOI: https://dx.doi.org/10.1159/000487486] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29694961]
76. Trachsel-Moncho, L.; Benlloch-Navarro, S.; Fernández-Carbonell, Á.; Ramírez-Lamelas, D.T.; Olivar, T.; Silvestre, D.; Poch, E.; Miranda, M. Oxidative Stress and Autophagy-Related Changes during Retinal Degeneration and Development. Cell Death Dis.; 2018; 9, 812. [DOI: https://dx.doi.org/10.1038/s41419-018-0855-8] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30042417]
77. Yao, J.; Jia, L.; Shelby, S.J.; Ganios, A.M.; Feathers, K.; Thompson, D.A.; Zacks, D.N. Circadian and Noncircadian Modulation of Autophagy in Photoreceptors and Retinal Pigment Epithelium. Investig. Opthalmol. Vis. Sci.; 2014; 55, 3237. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24781939][DOI: https://dx.doi.org/10.1167/iovs.13-13336]
78. Rodríguez-Muela, N.; Koga, H.; García-Ledo, L.; Villa, P.; Rosa, E.J.; Cuervo, A.M.; Boya, P. Balance between Autophagic Pathways Preserves Retinal Homeostasis. Aging Cell; 2013; 12, pp. 478-488. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23521856][DOI: https://dx.doi.org/10.1111/acel.12072]
79. Wang, T.; Lao, U.; Edgar, B.A. TOR-Mediated Autophagy Regulates Cell Death in Drosophila Neurodegenerative Disease. J. Cell Biol.; 2009; 186, pp. 703-711. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19720874][DOI: https://dx.doi.org/10.1083/jcb.200904090]
80. Villarejo-Zori, B.; Jiménez-Loygorri, J.I.; Zapata-Muñoz, J.; Bell, K.; Boya, P. New Insights into the Role of Autophagy in Retinal and Eye Diseases. Mol. Asp. Med.; 2021; 82, 101038. [DOI: https://dx.doi.org/10.1016/j.mam.2021.101038]
81. Barhoum, R.; Martínez-Navarrete, G.; Corrochano, S.; Germain, F.; Fernandez-Sanchez, L.; de la Rosa, E.J.; de la Villa, P.; Cuenca, N. Functional and Structural Modifications during Retinal Degeneration in the Rd10 Mouse. Neuroscience; 2008; 155, pp. 698-713. [DOI: https://dx.doi.org/10.1016/j.neuroscience.2008.06.042]
82. Yao, J.; Qiu, Y.; Frontera, E.; Jia, L.; Khan, N.W.; Klionsky, D.J.; Ferguson, T.A.; Thompson, D.A.; Zacks, D.N. Inhibiting Autophagy Reduces Retinal Degeneration Caused by Protein Misfolding. Autophagy; 2018; 14, pp. 1226-1238. [DOI: https://dx.doi.org/10.1080/15548627.2018.1463121]
83. Kakavand, K.; Jobling, A.I.; Greferath, U.; Vessey, K.A.; de Iongh, R.U.; Fletcher, E.L. Photoreceptor Degeneration in Pro23His Transgenic Rats (Line 3) Involves Autophagic and Necroptotic Mechanisms. Front. Neurosci.; 2020; 14, 581579. [DOI: https://dx.doi.org/10.3389/fnins.2020.581579] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33224023]
84. Nag, T.C. Pathogenic Mechanisms Contributing to the Vulnerability of Aging Human Photoreceptor Cells. Eye; 2021; 35, pp. 2917-2929. [DOI: https://dx.doi.org/10.1038/s41433-021-01602-1] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34079093]
85. de La Paz, M.; Anderson, R.E. Region and Age-Dependent Variation in Susceptibility of the Human Retina to Lipid Peroxidation. Investig. Ophthalmol. Vis. Sci.; 1992; 33, pp. 3497-3499. [DOI: https://dx.doi.org/10.1097/00006982-199313020-00022]
86. Sun, M.; Finnemann, S.C.; Febbraio, M.; Shan, L.; Annangudi, S.P.; Podrez, E.A.; Hoppe, G.; Darrow, R.; Organisciak, D.T.; Salomon, R.G. et al. Light-Induced Oxidation of Photoreceptor Outer Segment Phospholipids Generates Ligands for CD36-Mediated Phagocytosis by Retinal Pigment Epithelium. J. Biol. Chem.; 2006; 281, pp. 4222-4230. [DOI: https://dx.doi.org/10.1074/jbc.M509769200] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16354659]
87. Liu, Y.; Zhang, D.; Wu, Y.; Ji, B. Docosahexaenoic Acid Aggravates Photooxidative Damage in Retinal Pigment Epithelial Cells via Lipid Peroxidation. J. Photochem. Photobiol. B Biol.; 2014; 140, pp. 85-93. [DOI: https://dx.doi.org/10.1016/j.jphotobiol.2014.07.016]
88. Taubitz, T.; Tschulakow, A.V.; Tikhonovich, M.; Illing, B.; Fang, Y.; Biesemeier, A.; Julien-Schraermeyer, S.; Schraermeyer, U. Ultrastructural Alterations in the Retinal Pigment Epithelium and Photoreceptors of a Stargardt Patient and Three Stargardt Mouse Models: Indication for the Central Role of RPE Melanin in Oxidative Stress. PeerJ; 2018; 6, e5215. [DOI: https://dx.doi.org/10.7717/peerj.5215]
89. Lenis, T.L.; Hu, J.; Ng, S.Y.; Jiang, Z.; Sarfare, S.; Lloyd, M.B.; Esposito, N.J.; Samuel, W.; Jaworski, C.; Bok, D. et al. Expression of ABCA4 in the Retinal Pigment Epithelium and Its Implications for Stargardt Macular Degeneration. Proc. Natl. Acad. Sci. USA; 2018; 115, pp. E11120-E11127. [DOI: https://dx.doi.org/10.1073/pnas.1802519115]
90. Pole, C.; Ameri, H. Fundus Autofluorescence and Clinical Applications. J. Ophthalmic Vis. Res.; 2021; 16, pp. 432-461. [DOI: https://dx.doi.org/10.18502/jovr.v16i3.9439]
91. Su, L.-J.; Zhang, J.-H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.-Y. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxidative Med. Cell. Longev.; 2019; 2019, 5080843. [DOI: https://dx.doi.org/10.1155/2019/5080843]
92. Cortina, M.S.; Gordon, W.C.; Lukiw, W.J.; Bazan, N.G. Oxidative Stress-Induced Retinal Damage up-Regulates DNA Polymerase Gamma and 8-Oxoguanine-DNA-Glycosylase in Photoreceptor Synaptic Mitochondria. Exp. Eye Res.; 2005; 81, pp. 742-750. [DOI: https://dx.doi.org/10.1016/j.exer.2005.04.017]
93. Kong, Q.; Lin, C.G. Oxidative Damage to RNA: Mechanisms, Consequences, and Diseases. Cell. Mol. Life Sci.; 2010; 67, pp. 1817-1829. [DOI: https://dx.doi.org/10.1007/s00018-010-0277-y] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20148281]
94. Li, Z.; Chen, X.; Liu, Z.; Ye, W.; Li, L.; Qian, L.; Ding, H.; Li, P.; Aung, L.H.H. Recent Advances: Molecular Mechanism of RNA Oxidation and Its Role in Various Diseases. Front. Mol. Biosci.; 2020; 7, 184. [DOI: https://dx.doi.org/10.3389/fmolb.2020.00184] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32850971]
95. Berlett, B.S.; Stadtman, E.R. Protein Oxidation in Aging, Disease, and Oxidative Stress. J. Biol. Chem.; 1997; 272, pp. 20313-20316. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9252331][DOI: https://dx.doi.org/10.1074/jbc.272.33.20313]
96. Tzekov, R.; Stein, L.; Kaushal, S. Protein Misfolding and Retinal Degeneration. Cold Spring Harb. Perspect. Biol.; 2011; 3, a007492. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21825021][DOI: https://dx.doi.org/10.1101/cshperspect.a007492]
97. Zhang, S.X.; Sanders, E.; Fliesler, S.J.; Wang, J.J. Endoplasmic Reticulum Stress and the Unfolded Protein Responses in Retinal Degeneration. Exp. Eye Res.; 2014; 125, pp. 30-40. [DOI: https://dx.doi.org/10.1016/j.exer.2014.04.015] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24792589]
98. Kang, C.; Scott, L.J. Voretigene Neparvovec: A Review in RPE65 Mutation-Associated Inherited Retinal Dystrophy. Mol. Diagn. Ther.; 2020; 24, pp. 487-495. [DOI: https://dx.doi.org/10.1007/s40291-020-00475-6] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32535767]
99. Botto, C.; Rucli, M.; Tekinsoy, M.D.; Pulman, J.; Sahel, J.A.; Dalkara, D. Early and Late Stage Gene Therapy Interventions for Inherited Retinal Degenerations. Prog. Retin. Eye Res.; 2022; 86, 100975. [DOI: https://dx.doi.org/10.1016/j.preteyeres.2021.100975]
100. Chu-Tan, J.A.; Kirkby, M.; Natoli, R. Running to Save Sight: The Effects of Exercise on Retinal Health and Function. Clin. Exp. Ophthalmol.; 2022; 50, pp. 74-90. [DOI: https://dx.doi.org/10.1111/ceo.14023]
101. Pardue, M.T.; Allen, R.S. Neuroprotective Strategies for Retinal Disease. Prog. Retin. Eye Res.; 2018; 65, pp. 50-76. [DOI: https://dx.doi.org/10.1016/j.preteyeres.2018.02.002]
102. Wubben, T.J.; Zacks, D.N.; Besirli, C.G. Retinal Neuroprotection: Current Strategies and Future Directions. Curr. Opin. Ophthalmol.; 2019; 30, pp. 199-205. [DOI: https://dx.doi.org/10.1097/ICU.0000000000000558]
103. Walter, P.; Ron, D. The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation. Science; 2011; 334, pp. 1081-1086. [DOI: https://dx.doi.org/10.1126/science.1209038] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22116877]
104. Kroeger, H.; Chiang, W.C.; Felden, J.; Nguyen, A.; Lin, J.H. ER Stress and Unfolded Protein Response in Ocular Health and Disease. FEBS J.; 2019; 286, pp. 399-412. [DOI: https://dx.doi.org/10.1111/febs.14522] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29802807]
105. Gorbatyuk, M.S.; Knox, T.; LaVail, M.M.; Gorbatyuk, O.S.; Noorwez, S.M.; Hauswirth, W.W.; Lin, J.H.; Muzyczka, N.; Lewin, A.S. Restoration of Visual Function in P23H Rhodopsin Transgenic Rats by Gene Delivery of BiP/Grp78. Proc. Natl. Acad. Sci. USA; 2010; 107, pp. 5961-5966. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20231467][DOI: https://dx.doi.org/10.1073/pnas.0911991107]
106. Bhootada, Y.; Kotla, P.; Zolotukhin, S.; Gorbatyuk, O.; Bebok, Z.; Athar, M.; Gorbatyuk, M. Limited ATF4 Expression in Degenerating Retinas with Ongoing ER Stress Promotes Photoreceptor Survival in a Mouse Model of Autosomal Dominant Retinitis Pigmentosa. PLoS ONE; 2016; 11, e0154779. [DOI: https://dx.doi.org/10.1371/journal.pone.0154779] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27144303]
107. Donato, L.; Bramanti, P.; Scimone, C.; Rinaldi, C.; D’Angelo, R.; Sidoti, A. MiRNAexpression Profile of Retinal Pigment Epithelial Cells under Oxidative Stress Conditions. FEBS Open Bio; 2018; 8, pp. 219-233. [DOI: https://dx.doi.org/10.1002/2211-5463.12360] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29435412]
108. Aldini, G.; Altomare, A.; Baron, G.; Vistoli, G.; Carini, M.; Borsani, L.; Sergio, F. N-Acetylcysteine as an Antioxidant and Disulphide Breaking Agent: The Reasons Why. Free Radic. Res.; 2018; 52, pp. 751-762. [DOI: https://dx.doi.org/10.1080/10715762.2018.1468564] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29742938]
109. Yoshida, N.; Ikeda, Y.; Notomi, S.; Ishikawa, K.; Murakami, Y.; Hisatomi, T.; Enaida, H.; Ishibashi, T. Laboratory Evidence of Sustained Chronic Inflammatory Reaction in Retinitis Pigmentosa. Ophthalmology; 2013; 120, pp. e5-e12. [DOI: https://dx.doi.org/10.1016/j.ophtha.2012.07.008] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22986110]
110. Nakamura, M.; Kuse, Y.; Tsuruma, K.; Shimazawa, M.; Hara, H. The Involvement of the Oxidative Stress in Murine Blue LED Light-Induced Retinal Damage Model. Biol. Pharm. Bull.; 2017; 40, pp. 1219-1225. [DOI: https://dx.doi.org/10.1248/bpb.b16-01008]
111. Narimatsu, T.; Ozawa, Y.; Miyake, S.; Nagai, N.; Tsubota, K. Angiotensin II Type 1 Receptor Blockade Suppresses Light-Induced Neural Damage in the Mouse Retina. Free Radic. Biol. Med.; 2014; 71, pp. 176-185. [DOI: https://dx.doi.org/10.1016/j.freeradbiomed.2014.03.020]
112. Saito, Y.; Tsuruma, K.; Shimazawa, M.; Nishimura, Y.; Tanaka, T.; Hara, H. Establishment of a Drug Evaluation Model against Light-Induced Retinal Degeneration Using Adult Pigmented Zebrafish. J. Pharmacol. Sci.; 2016; 131, pp. 215-218. [DOI: https://dx.doi.org/10.1016/j.jphs.2016.05.009]
113. Issa, N.M.; Al-Gholam, M.A. The Effect of N-Acetylcysteine on the Sensory Retina of Male Albino Rats Exposed Prenatally to Cypermethrin. Folia Morphol.; 2021; 80, pp. 140-148. [DOI: https://dx.doi.org/10.5603/FM.a2020.0043] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32301102]
114. Ye, F.; Kaneko, H.; Nagasaka, Y.; Ijima, R.; Nakamura, K.; Nagaya, M.; Takayama, K.; Kajiyama, H.; Senga, T.; Tanaka, H. et al. Plasma-Activated Medium Suppresses Choroidal Neovascularization in Mice: A New Therapeutic Concept for Age-Related Macular Degeneration. Sci. Rep.; 2015; 5, 7705. [DOI: https://dx.doi.org/10.1038/srep07705] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25573059]
115. Hsu, S.M.; Yang, C.H.; Teng, Y.T.; Tsai, H.Y.; Lin, C.Y.; Lin, C.J.; Shieh, C.C.; Chen, S.H. Suppression of the Reactive Oxygen Response Alleviates Experimental Autoimmune Uveitis in Mice. Int. J. Mol. Sci.; 2020; 21, 3261. [DOI: https://dx.doi.org/10.3390/ijms21093261] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32380695]
116. Daudin, J.B.; Monnet, D.; Kavian, N.; Espy, C.; Wang, A.; Chéreau, C.; Goulvestre, C.; Omri, S.; Brézin, A.; Weill, B. et al. Protective Effect of Pristane on Experimental Autoimmune Uveitis. Immunol. Lett.; 2011; 141, pp. 83-93. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21896286][DOI: https://dx.doi.org/10.1016/j.imlet.2011.07.009]
117. Miller, W.P.; Toro, A.L.; Barber, A.J.; Dennis, M.D. REDD1 Activates a ROS-Generating Feedback Loop in the Retina of Diabetic Mice. Investig. Ophthalmol. Vis. Sci.; 2019; 60, pp. 2369-2379. [DOI: https://dx.doi.org/10.1167/iovs.19-26606]
118. Zhu, Y.; Zhang, X.L.; Zhu, B.F.; Ding, Y.N. Effect of Antioxidant N-Acetylcysteine on Diabetic Retinopathy and Expression of VEGF and ICAM-1 from Retinal Blood Vessels of Diabetic Rats. Mol. Biol. Rep.; 2012; 39, pp. 3727-3735. [DOI: https://dx.doi.org/10.1007/s11033-011-1148-9]
119. Sano, H.; Namekata, K.; Kimura, A.; Shitara, H.; Guo, X.; Harada, C.; Mitamura, Y.; Harada, T. Differential Effects of N-Acetylcysteine on Retinal Degeneration in Two Mouse Models of Normal Tension Glaucoma. Cell Death Dis.; 2019; 10, 75. [DOI: https://dx.doi.org/10.1038/s41419-019-1365-z]
120. Kim, T.W.; Moon, J.W.; Yu, H.G. N-Acetylcysteine Protects against Chorioretinal Damage Induced by Photodynamic Therapy for Experimental Choroidal Neovascularization in a Rat Model. Photodiagnosis Photodyn. Ther.; 2018; 23, pp. 12-17. [DOI: https://dx.doi.org/10.1016/j.pdpdt.2018.04.006]
121. Kong, X.; Hafiz, G.; Wehling, D.; Akhlaq, A.; Campochiaro, P.A. Locus-Level Changes in Macular Sensitivity in Patients with Retinitis Pigmentosa Treated with Oral N-Acetylcysteine. Am. J. Ophthalmol.; 2021; 221, pp. 105-114. [DOI: https://dx.doi.org/10.1016/j.ajo.2020.08.002]
122. Campochiaro, P.A.; Iftikhar, M.; Hafiz, G.; Akhlaq, A.; Tsai, G.; Wehling, D.; Lu, L.; Wall, G.M.; Singh, M.S.; Kong, X. Oral N-Acetylcysteine Improves Cone Function in Retinitis Pigmentosa Patients in Phase I Trial. J. Clin. Investig.; 2020; 130, pp. 1527-1541. [DOI: https://dx.doi.org/10.1172/JCI132990]
123. Parravano, M.; Tedeschi, M.; Manca, D.; Costanzo, E.; Di Renzo, A.; Giorno, P.; Barbano, L.; Ziccardi, L.; Varano, M.; Parisi, V. Effects of Macuprev ® Supplementation in Age-Related Macular Degeneration: A Double-Blind Randomized Morpho-Functional Study Along 6 Months of Follow-Up. Adv. Ther.; 2019; 36, pp. 2493-2505. [DOI: https://dx.doi.org/10.1007/s12325-019-01016-2] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31243641]
124. Schimel, A.M.; Abraham, L.; Kraus, C.; Ercal, N.; Apte, R.S. A Novel Thiol Antioxidant, N-Acetylcysteine Amide, Prevents Retinal Degeneration in Rd10 Mice. Investig. Ophthalmol. Vis. Sci.; 2010; 51, 2940. [DOI: https://dx.doi.org/10.1016/j.ajpath.2011.01.036]
125. Schimel, A.M.; Abraham, L.; Cox, D.; Sene, A.; Kraus, C.; Dace, D.S.; Ercal, N.; Apte, R.S. N-Acetylcysteine Amide (NACA) Prevents Retinal Degeneration by up-Regulating Reduced Glutathione Production and Reversing Lipid Peroxidation. Am. J. Pathol.; 2011; 178, pp. 2032-2043. [DOI: https://dx.doi.org/10.1016/j.ajpath.2011.01.036] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21457933]
126. Gimeno-Hernández, R.; Cantó, A.; Fernández-Carbonell, A.; Olivar, T.; Hernández-Rabaza, V.; Almansa, I.; Miranda, M. Thioredoxin Delays Photoreceptor Degeneration, Oxidative and Inflammation Alterations in Retinitis Pigmentosa. Front. Pharmacol.; 2020; 11, 590572. [DOI: https://dx.doi.org/10.3389/fphar.2020.590572] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33424600]
127. Elachouri, G.; Lee-Rivera, I.; Clérin, E.; Argentini, M.; Fridlich, R.; Blond, F.; Ferracane, V.; Yang, Y.; Raffelsberger, W.; Wan, J. et al. Thioredoxin Rod-Derived Cone Viability Factor Protects against Photooxidative Retinal Damage. Free Radic. Biol. Med.; 2015; 81, pp. 22-29. [DOI: https://dx.doi.org/10.1016/j.freeradbiomed.2015.01.003] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25596499]
128. Kong, H.; Ren, X.; Zhang, H.; Wang, N.; Zhang, C.; Li, L.; Xia, X.; Kong, L.; Zhang, M.; Xu, M. Thioredoxin Is a Potential Therapy for Light-Induced Photoreceptor Degeneration in Diabetic Mice. Neuro Endocrinol. Lett.; 2019; 39, pp. 561-566.
129. Natoli, R.; Zhu, Y.; Valter, K.; Bisti, S.; Eells, J.; Stone, J. Gene and Noncoding RNA Regulation Underlying Photoreceptor Protection: Microarray Study of Dietary Antioxidant Saffron and Photobiomodulation in Rat Retina. Mol. Vis.; 2010; 16, pp. 1801-1822.
130. Maccarone, R.; Di Marco, S.; Bisti, S. Saffron Supplement Maintains Morphology and Function after Exposure to Damaging Light in Mammalian Retina. Investig. Ophthalmol. Vis. Sci.; 2008; 49, pp. 1254-1261. [DOI: https://dx.doi.org/10.1167/iovs.07-0438]
131. Di Marco, F.; Romeo, S.; Nandasena, C.; Purushothuman, S.; Adams, C.; Bisti, S.; Stone, J. The Time Course of Action of Two Neuroprotectants, Dietary Saffron and Photobiomodulation, Assessed in the Rat Retina. Am. J. Neurodegener. Dis.; 2013; 2, pp. 208-220.
132. Fernández-Sánchez, L.; Lax, P.; Esquiva, G.; Martín-Nieto, J.; Pinilla, I.; Cuenca, N. Safranal, a Saffron Constituent, Attenuates Retinal Degeneration in P23H Rats. PLoS ONE; 2012; 7, e43074. [DOI: https://dx.doi.org/10.1371/journal.pone.0043074]
133. Ohno, Y.; Nakanishi, T.; Umigai, N.; Tsuruma, K.; Shimazawa, M.; Hara, H. Oral Administration of Crocetin Prevents Inner Retinal Damage Induced by N-Methyl-D-Aspartate in Mice. Eur. J. Pharmacol.; 2012; 690, pp. 84-89. [DOI: https://dx.doi.org/10.1016/j.ejphar.2012.06.035] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22760072]
134. Falsini, B.; Piccardi, M.; Minnella, A.; Savastano, C.; Capoluongo, E.; Fadda, A.; Balestrazzi, E.; Maccarone, R.; Bisti, S. Influence of Saffron Supplementation on Retinal Flicker Sensitivity in Early Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci.; 2010; 51, pp. 6118-6124. [DOI: https://dx.doi.org/10.1167/iovs.09-4995] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20688744]
135. Ozaki, E.; Delaney, C.; Campbell, M.; Doyle, S.L. Minocycline Suppresses Disease-Associated Microglia (DAM) in a Model of Photoreceptor Cell Degeneration. Exp. Eye Res.; 2022; 217, 108953. [DOI: https://dx.doi.org/10.1016/j.exer.2022.108953] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35090890]
136. Terauchi, R.; Kohno, H.; Watanabe, S.; Saito, S.; Watanabe, A.; Nakano, T. Minocycline Decreases CCR2-Positive Monocytes in the Retina and Ameliorates Photoreceptor Degeneration in a Mouse Model of Retinitis Pigmentosa. PLoS ONE; 2021; 16, e0239108. [DOI: https://dx.doi.org/10.1371/journal.pone.0239108] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33886548]
137. Di Pierdomenico, J.; Scholz, R.; Valiente-Soriano, F.J.; Sánchez-Migallón, M.C.; Vidal-Sanz, M.; Langmann, T.; Agudo-Barriuso, M.; García-Ayuso, D.; Villegas-Pérez, M.P. Neuroprotective Effects of FGF2 and Minocycline in Two Animal Models of Inherited Retinal Degeneration. Investig. Ophthalmol. Vis. Sci.; 2018; 59, pp. 4392-4403. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30193320][DOI: https://dx.doi.org/10.1167/iovs.18-24621]
138. Peng, B.; Xiao, J.; Wang, K.; So, K.-F.; Tipoe, G.L.; Lin, B. Suppression of Microglial Activation Is Neuroprotective in a Mouse Model of Human Retinitis Pigmentosa. J. Neurosci.; 2014; 34, pp. 8139-8150. [DOI: https://dx.doi.org/10.1523/JNEUROSCI.5200-13.2014]
139. Hughes, E.H.; Schlichtenbrede, F.C.; Murphy, C.C.; Broderick, C.; van Rooijen, N.; Ali, R.R.; Dick, A.D. Minocycline Delays Photoreceptor Death in the Rds Mouse through a Microglia-Independent Mechanism. Exp. Eye Res.; 2004; 78, pp. 1077-1084. [DOI: https://dx.doi.org/10.1016/j.exer.2004.02.002]
140. Yang, L.; Li, Y.; Zhu, X.; Tso, M.O.M. Minocycline Delayed Photoreceptor Death in Rds Mice through INOS-Dependent Mechanism. Mol. Vis.; 2007; 13, pp. 1073-1082.
141. Takeda, A.; Shinozaki, Y.; Kashiwagi, K.; Ohno, N.; Eto, K.; Wake, H.; Nabekura, J.; Koizumi, S. Microglia Mediate Non-Cell-Autonomous Cell Death of Retinal Ganglion Cells. Glia; 2018; 66, pp. 2366-2384. [DOI: https://dx.doi.org/10.1002/glia.23475]
142. Shimazawa, M.; Yamashima, T.; Agarwal, N.; Hara, H. Neuroprotective Effects of Minocycline against in Vitro and in Vivo Retinal Ganglion Cell Damage. Brain Res.; 2005; 1053, pp. 185-194. [DOI: https://dx.doi.org/10.1016/j.brainres.2005.06.053]
143. Grotegut, P.; Perumal, N.; Kuehn, S.; Smit, A.; Dick, H.B.; Grus, F.H.; Joachim, S.C. Minocycline Reduces Inflammatory Response and Cell Death in a S100B Retina Degeneration Model. J. Neuroinflamm.; 2020; 17, 375. [DOI: https://dx.doi.org/10.1186/s12974-020-02012-y] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33317557]
144. Sun, C.; Li, X.X.; He, X.J.; Zhang, Q.; Tao, Y. Neuroprotective Effect of Minocycline in a Rat Model of Branch Retinal Vein Occlusion. Exp. Eye Res.; 2013; 113, pp. 105-116. [DOI: https://dx.doi.org/10.1016/j.exer.2013.05.018] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23748101]
145. Dannhausen, K.; Möhle, C.; Langmann, T. Immunomodulation with Minocycline Rescues Retinal Degeneration in Juvenile Neuronal Ceroid Lipofuscinosis Mice Highly Susceptible to Light Damage. Dis. Model. Mech.; 2018; 11, dmm033597. [DOI: https://dx.doi.org/10.1242/dmm.033597] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30042155]
146. Miralles de Imperial-Ollero, J.A.; Gallego-Ortega, A.; Norte-Muñoz, M.; Di Pierdomenico, J.; Valiente-Soriano, F.J.; Vidal-Sanz, M. An In Vivo Model of Focal Light Emitting Diode-Induced Cone Photoreceptor Phototoxicity in Adult Pigmented Mice: Protection with BFGF. Exp. Eye Res.; 2021; 211, 108746. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34450185][DOI: https://dx.doi.org/10.1016/j.exer.2021.108746]
147. Scholz, R.; Sobotka, M.; Caramoy, A.; Stempfl, T.; Moehle, C.; Langmann, T. Minocycline Counter-Regulates pro-Inflammatory Microglia Responses in the Retina and Protects from Degeneration. J. Neuroinflamm.; 2015; 12, 209. [DOI: https://dx.doi.org/10.1186/s12974-015-0431-4]
148. Zhang, C.; Lei, B.; Lam, T.T.; Yang, F.; Sinha, D.; Tso, M.O.M. Neuroprotection of Photoreceptors by Minocycline in Light-Induced Retinal Degeneration. Investig. Ophthalmol. Vis. Sci.; 2004; 45, pp. 2753-2759. [DOI: https://dx.doi.org/10.1167/iovs.03-1344]
149. Chang, C.J.; Cherng, C.H.; Liou, W.S.; Liao, C.L. Minocycline Partially Inhibits Caspase-3 Activation and Photoreceptor Degeneration after Photic Injury. Ophthalmic Res.; 2005; 37, pp. 202-213. [DOI: https://dx.doi.org/10.1159/000086610]
150. Rao, Y.Q.; Zhou, Y.T.; Zhou, W.; Li, J.K.; Li, B.; Li, J. MTORC1 Activation in Chx10-Specific Tsc1 Knockout Mice Accelerates Retina Aging and Degeneration. Oxidative Med. Cell. Longev.; 2021; 2021, 6715758. [DOI: https://dx.doi.org/10.1155/2021/6715758]
151. Zhao, L.; Ma, W.; Fariss, R.N.; Wong, W.T. Minocycline Attenuates Photoreceptor Degeneration in a Mouse Model of Subretinal Hemorrhage Microglial: Inhibition as a Potential Therapeutic Strategy. Am. J. Pathol.; 2011; 179, pp. 1265-1277. [DOI: https://dx.doi.org/10.1016/j.ajpath.2011.05.042]
152. Wang, W.; Sidoli, S.; Zhang, W.; Wang, Q.; Wang, L.; Jensen, O.N.; Guo, L.; Zhao, X.; Zheng, L. Abnormal Levels of Histone Methylation in the Retinas of Diabetic Rats Are Reversed by Minocycline Treatment. Sci Rep.; 2017; 7, [DOI: https://dx.doi.org/10.1038/srep45103]
153. Chen, W.; Zhao, M.; Zhao, S.; Lu, Q.; Ni, L.; Zou, C.; Lu, L.; Xu, X.; Guan, H.; Zheng, Z. et al. Activation of the TXNIP/NLRP3 Inflammasome Pathway Contributes to Inflammation in Diabetic Retinopathy: A Novel Inhibitory Effect of Minocycline. Inflamm. Res.; 2017; 66, pp. 157-166. [DOI: https://dx.doi.org/10.1007/s00011-016-1002-6] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27785530]
154. Wu, Y.; Chen, Y.; Wu, Q.; Jia, L.; Du, X. Minocycline Inhibits PARP-1 Expression and Decreases Apoptosis in Diabetic Retinopathy. Mol. Med. Rep.; 2015; 12, pp. 4887-4894. [DOI: https://dx.doi.org/10.3892/mmr.2015.4064] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26165350]
155. Levkovitch-Verbin, H.; Waserzoog, Y.; Vander, S.; Makarovsky, D.; Ilia, P. Minocycline Mechanism of Neuroprotection Involves the Bcl-2 Gene Family in Optic Nerve Transection. Int. J. Neurosci.; 2014; 124, pp. 755-761. [DOI: https://dx.doi.org/10.3109/00207454.2013.878340] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24410139]
156. Levkovitch-Verbin, H.; Kalev-Landoy, M.; Habot-Wilner, Z.; Melamed, S. Minocycline Delays Death of Retinal Ganglion Cells in Experimental Glaucoma and after Optic Nerve Transection. Arch. Ophthalmol.; 2006; 124, pp. 520-526. [DOI: https://dx.doi.org/10.1001/archopht.124.4.520] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16606878]
157. Li, X.; Ye, Z.; Pei, S.; Zheng, D.; Zhu, L. Neuroprotective Effect of Minocycline on Rat Retinal Ischemia-Reperfusion Injury. Mol. Vis.; 2021; 27, pp. 438-456.
158. Abcouwer, S.F.; Lin, C.M.; Shanmugam, S.; Muthusamy, A.; Barber, A.J.; Antonetti, D.A. Minocycline Prevents Retinal Inflammation and Vascular Permeability Following Ischemia-Reperfusion Injury. J. Neuroinflamm.; 2013; 10, 149. [DOI: https://dx.doi.org/10.1186/1742-2094-10-149]
159. Chen, Y.I.; Lee, Y.J.; Wilkie, D.A.; Lin, C.T. Evaluation of Potential Topical and Systemic Neuroprotective Agents for Ocular Hypertension-Induced Retinal Ischemia-Reperfusion Injury. Vet. Ophthalmol.; 2014; 17, pp. 432-442. [DOI: https://dx.doi.org/10.1111/vop.12105]
160. Levkovitch-Verbin, H.; Waserzoog, Y.; Vander, S.; Makarovsky, D.; Piven, I. Minocycline Upregulates Pro-Survival Genes and Downregulates pro-Apoptotic Genes in Experimental Glaucoma. Graefe’s Arch. Clin. Exp. Ophthalmol.; 2014; 252, pp. 761-772. [DOI: https://dx.doi.org/10.1007/s00417-014-2588-4]
161. Bordone, M.P.; González Fleitas, M.F.; Pasquini, L.A.; Bosco, A.; Sande, P.H.; Rosenstein, R.E.; Dorfman, D. Involvement of Microglia in Early Axoglial Alterations of the Optic Nerve Induced by Experimental Glaucoma. J. Neurochem.; 2017; 142, pp. 323-337. [DOI: https://dx.doi.org/10.1111/jnc.14070]
162. Wang, K.; Peng, B.; Lin, B. Fractalkine Receptor Regulates Microglial Neurotoxicity in an Experimental Mouse Glaucoma Model. Glia; 2014; 62, pp. 1943-1954. [DOI: https://dx.doi.org/10.1002/glia.22715]
163. Bosco, A.; Inman, D.M.; Steele, M.R.; Wu, G.; Soto, I.; Marsh-Armstrong, N.; Hubbard, W.C.; Calkins, D.J.; Horner, P.J.; Vetter, M.L. Reduced Retina Microglial Activation and Improved Optic Nerve Integrity with Minocycline Treatment in the DBA/2J Mouse Model of Glaucoma. Investig. Ophthalmol. Vis. Sci.; 2008; 49, pp. 1437-1446. [DOI: https://dx.doi.org/10.1167/iovs.07-1337] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18385061]
164. Huang, R.; Liang, S.; Fang, L.; Wu, M.; Cheng, H.; Mi, X.; Ding, Y. Low-Dose Minocycline Mediated Neuroprotection on Retinal Ischemia-Reperfusion Injury of Mice. Mol. Vis.; 2018; 24, pp. 367-378. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29853771]
165. Jiao, X.; Peng, Y.; Yang, L. Minocycline Protects Retinal Ganglion Cells after Optic Nerve Crush Injury in Mice by Delaying Autophagy and Upregulating Nuclear Factor-ΚB2. Chin. Med. J.; 2014; 127, pp. 1749-1754. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24791886]
166. Baptiste, D.C.; Powell, K.J.; Jollimore, C.A.B.; Hamilton, C.; LeVatte, T.L.; Archibald, M.L.; Chauhan, B.C.; Robertson, G.S.; Kelly, M.E.M. Effects of Minocycline and Tetracycline on Retinal Ganglion Cell Survival after Axotomy. Neuroscience; 2005; 134, pp. 575-582. [DOI: https://dx.doi.org/10.1016/j.neuroscience.2005.04.011]
167. Lax, P.; Otalora, B.B.; Esquiva, G.; Rol, M.D.L.Á.; Madrid, J.A.; Cuenca, N. Circadian Dysfunction in P23H Rhodopsin Transgenic Rats: Effects of Exogenous Melatonin. J. Pineal Res.; 2011; 50, pp. 183-191. [DOI: https://dx.doi.org/10.1111/j.1600-079X.2010.00827.x]
168. Fuentes-Broto, L.; Perdices, L.; Segura, F.; Orduna-Hospital, E.; Insa-Sánchez, G.; Sánchez-Cano, A.I.; Cuenca, N.; Pinilla, I. Effects of Daily Melatonin Supplementation on Visual Loss, Circadian Rhythms, and Hepatic Oxidative Damage in a Rodent Model of Retinitis Pigmentosa. Antioxidants; 2021; 10, 1853. [DOI: https://dx.doi.org/10.3390/antiox10111853]
169. Xu, X.J.; Wang, S.M.; Jin, Y.; Hu, Y.T.; Feng, K.; Ma, Z.Z. Melatonin Delays Photoreceptor Degeneration in a Mouse Model of Autosomal Recessive Retinitis Pigmentosa. J. Pineal Res.; 2017; 63, e12428. [DOI: https://dx.doi.org/10.1111/jpi.12428]
170. Liang, F.Q.; Aleman, T.S.; Yang, Z.; Cideciyan, A.V.; Jacobson, S.G.; Bennett, J. Melatonin Delays Photoreceptor Degeneration in the Rds/Rds Mouse. Neuroreport; 2001; 12, pp. 1011-1014. [DOI: https://dx.doi.org/10.1097/00001756-200104170-00029]
171. Zhang, R.; Hrushesky, W.J.M.; Wood, P.A.; Lee, S.H.; Hunt, R.C.; Jahng, W.J. Melatonin Reprogrammes Proteomic Profile in Light-Exposed Retina In Vivo. Int. J. Biol. Macromol.; 2010; 47, pp. 255-260. [DOI: https://dx.doi.org/10.1016/j.ijbiomac.2010.04.013]
172. Li, C.; Tian, Y.; Yao, A.; Zha, X.; Zhang, J.; Tao, Y. Intravitreal Delivery of Melatonin Is Protective Against the Photoreceptor Loss in Mice: A Potential Therapeutic Strategy for Degenerative Retinopathy. Front. Pharmacol.; 2020; 10, 1633. [DOI: https://dx.doi.org/10.3389/fphar.2019.01633]
173. Avunduk, A.M.; Avunduk, M.C.; Baltaci, A.K.; Moǧulkoç, R. Effect of Melatonin and Zinc on the Immune Response in Experimental Toxoplasma Retinochoroiditis. Ophthalmologica; 2007; 221, pp. 421-425. [DOI: https://dx.doi.org/10.1159/000107504] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17947831]
174. Xu, Y.; Cui, K.; Li, J.; Tang, X.; Lin, J.; Lu, X.; Huang, R.; Yang, B.; Shi, Y.; Ye, D. et al. Melatonin Attenuates Choroidal Neovascularization by Regulating Macrophage/Microglia Polarization via Inhibition of RhoA/ROCK Signaling Pathway. J. Pineal. Res.; 2020; 69, e12660. [DOI: https://dx.doi.org/10.1111/jpi.12660] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32323368]
175. Diéguez, H.H.; González Fleitas, M.F.; Aranda, M.L.; Calanni, J.S.; Keller Sarmiento, M.I.; Chianelli, M.S.; Alaimo, A.; Sande, P.H.; Romeo, H.E.; Rosenstein, R.E. et al. Melatonin Protects the Retina from Experimental Nonexudative Age-Related Macular Degeneration in Mice. J. Pineal Res.; 2020; 68, e12643. [DOI: https://dx.doi.org/10.1111/jpi.12643] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32133696]
176. Jiang, T.; Chang, Q.; Cai, J.; Fan, J.; Zhang, X.; Xu, G. Protective Effects of Melatonin on Retinal Inflammation and Oxidative Stress in Experimental Diabetic Retinopathy. Oxidative Med. Cell. Longev.; 2016; 2016, 3528274. [DOI: https://dx.doi.org/10.1155/2016/3528274]
177. Özdemir, G.; Ergün, Y.; Bakariş, S.; Kilinç, M.; Durdu, H.; Ganiyusufoğlu, E. Melatonin Prevents Retinal Oxidative Stress and Vascular Changes in Diabetic Rats. Eye (Basingstoke); 2014; 28, pp. 1020-1027. [DOI: https://dx.doi.org/10.1038/eye.2014.127]
178. Tang, L.; Zhang, C.; Yang, Q.; Xie, H.; Liu, D.; Tian, H.; Lu, L.; Xu, J.Y.; Li, W.; Xu, G. et al. Melatonin Maintains Inner Blood-Retinal Barrier via Inhibition of P38/TXNIP/NF-κB Pathway in Diabetic Retinopathy. J. Cell. Physiol.; 2021; 236, pp. 5848-5864. [DOI: https://dx.doi.org/10.1002/jcp.30269]
179. Mehrzadi, S.; Motevalian, M.; Rezaei Kanavi, M.; Fatemi, I.; Ghaznavi, H.; Shahriari, M. Protective Effect of Melatonin in the Diabetic Rat Retina. Fundam. Clin. Pharmacol.; 2018; 32, pp. 414-421. [DOI: https://dx.doi.org/10.1111/fcp.12361]
180. Ferreira de Melo, I.M.; Martins Ferreira, C.G.; Lima da Silva Souza, E.H.; Almeida, L.L.; Bezerra de Sá, F.; Cavalcanti Lapa Neto, C.J.; Paz de Castro, M.V.; Teixeira, V.W.; Coelho Teixeira, Á.A. Melatonin Regulates the Expression of Inflammatory Cytokines, VEGF and Apoptosis in Diabetic Retinopathy in Rats. Chem. Biol. Interact.; 2020; 327, 109183. [DOI: https://dx.doi.org/10.1016/j.cbi.2020.109183]
181. Salido, E.M.; Bordone, M.; De Laurentiis, A.; Chianelli, M.; Keller Sarmiento, M.I.; Dorfman, D.; Rosenstein, R.E. Therapeutic Efficacy of Melatonin in Reducing Retinal Damage in an Experimental Model of Early Type 2 Diabetes in Rats. J. Pineal Res.; 2013; 54, pp. 179-189. [DOI: https://dx.doi.org/10.1111/jpi.12008]
182. Chang, J.Y.A.; Yu, F.; Shi, L.; Ko, M.L.; Ko, G.Y.P. Melatonin Affects Mitochondrial Fission/Fusion Dynamics in the Diabetic Retina. J. Diabetes Res.; 2019; 2019, 8463125. [DOI: https://dx.doi.org/10.1155/2019/8463125]
183. Li, X.; Zhang, M.; Tang, W. Effects of Melatonin on Streptozotocin-Induced Retina Neuronal Apoptosis in High Blood Glucose Rat. Neurochem. Res.; 2013; 38, pp. 669-676. [DOI: https://dx.doi.org/10.1007/s11064-012-0966-z] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23299510]
184. Djordjevic, B.; Cvetkovic, T.; Stoimenov, T.J.; Despotovic, M.; Zivanovic, S.; Basic, J.; Veljkovic, A.; Velickov, A.; Kocic, G.; Pavlovic, D. et al. Oral Supplementation with Melatonin Reduces Oxidative Damage and Concentrations of Inducible Nitric Oxide Synthase, VEGF and Matrix Metalloproteinase 9 in the Retina of Rats with Streptozotocin/Nicotinamide Induced Pre-Diabetes. Eur. J. Pharmacol.; 2018; 833, pp. 290-297. [DOI: https://dx.doi.org/10.1016/j.ejphar.2018.06.011] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29890158]
185. Tu, Y.; Song, E.; Wang, Z.; Ji, N.; Zhu, L.; Wang, K.; Sun, H.; Zhang, Y.; Zhu, Q.; Liu, X. et al. Melatonin Attenuates Oxidative Stress and Inflammation of Müller Cells in Diabetic Retinopathy via Activating the Sirt1 Pathway. Biomed. Pharmacother.; 2021; 137, 111274. [DOI: https://dx.doi.org/10.1016/j.biopha.2021.111274] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33517190]
186. Oliveira-Abreu, K.; Cipolla-Neto, J.; Leal-Cardoso, J.H. Effects of Melatonin on Diabetic Neuropathy and Retinopathy. Int. J. Mol. Sci.; 2021; 23, 100. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35008523][DOI: https://dx.doi.org/10.3390/ijms23010100]
187. Huang, R.; Xu, Y.; Lu, X.; Tang, X.; Lin, J.; Cui, K.; Yu, S.; Shi, Y.; Ye, D.; Liu, Y. et al. Melatonin Protects Inner Retinal Neurons of Newborn Mice after Hypoxia-Ischemia. J. Pineal Res.; 2021; 71, e12716. [DOI: https://dx.doi.org/10.1111/jpi.12716]
188. Yilmaz, T.; Çelebi, S.; Kükner, A.Ş. The Protective Effects of Melatonin, Vitamin E and Octreotide on Retinal Edema during Ischemia-Reperfusion in the Guinea Pig Retina. Eur. J. Ophthalmol.; 2002; 12, pp. 443-449. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12510712][DOI: https://dx.doi.org/10.1177/112067210201200601]
189. Yi, C.; Pan, X.; Yan, H.; Guo, M.; Pierpaoli, W. Effects of Melatonin in Age-Related Macular Degeneration. Ann. N. Y. Acad. Sci.; 2005; 1057, pp. 384-392. [DOI: https://dx.doi.org/10.1196/annals.1356.029]
190. Scott, P.A.; Kaplan, H.J.; McCall, M.A. Prenatal Exposure to Curcumin Protects Rod Photoreceptors in a Transgenic Pro23His Swine Model of Retinitis Pigmentosa. Transl. Vis. Sci. Technol.; 2015; 4, 5. [DOI: https://dx.doi.org/10.1167/tvst.4.5.5]
191. Vasireddy, V.; Chavali, V.R.M.; Joseph, V.T.; Kadam, R.; Lin, J.H.; Jamison, J.A.; Kompella, U.B.; Reddy, G.B.; Ayyagari, R. Rescue of Photoreceptor Degeneration by Curcumin in Transgenic Rats with P23H Rhodopsin Mutation. PLoS ONE; 2011; 6, e21193. [DOI: https://dx.doi.org/10.1371/journal.pone.0021193]
192. Emoto, Y.; Yoshizawa, K.; Uehara, N.; Kinoshita, Y.; Yuri, T.; Shikata, N.; Tsubura, A. Curcumin Suppresses N-Methyl-N-Nitrosourea-Induced Photoreceptor Apoptosis in Sprague-Dawley Rats. In Vivo; 2013; 27, pp. 583-590.
193. Mandal, M.N.A.; Patlolla, J.M.R.; Zheng, L.; Agbaga, M.P.; Tran, J.T.A.; Wicker, L.; Kasus-Jacobi, A.; Elliott, M.H.; Rao, C.V.; Anderson, R.E. Curcumin Protects Retinal Cells from Light-and Oxidant Stress-Induced Cell Death. Free Radic. Biol. Med.; 2009; 46, pp. 672-679. [DOI: https://dx.doi.org/10.1016/j.freeradbiomed.2008.12.006] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19121385]
194. Xie, T.; Chen, X.; Chen, W.; Huang, S.; Peng, X.; Tian, L.; Wu, X.; Huang, Y. Curcumin Is a Potential Adjuvant to Alleviates Diabetic Retinal Injury via Reducing Oxidative Stress and Maintaining Nrf2 Pathway Homeostasis. Front. Pharmacol.; 2021; 12, 796565. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34955862][DOI: https://dx.doi.org/10.3389/fphar.2021.796565]
195. Yang, F.; Yu, J.; Ke, F.; Lan, M.; Li, D.; Tan, K.; Ling, J.; Wang, Y.; Wu, K.; Li, D. Curcumin Alleviates Diabetic Retinopathy in Experimental Diabetic Rats. Ophthalmic Res.; 2018; 60, pp. 43-54. [DOI: https://dx.doi.org/10.1159/000486574] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29597206]
196. Jariyapongskul, A.; Areebambud, C.; Hideyuki, N. Microhemodynamic Indices to Evaluate the Effectiveness of Herbal Medicine in Diabetes: A Comparison between Alpha-Mangostin and Curcumin in the Retina of Type 2 Diabetic Rats. Clin. Hemorheol. Microcirc.; 2018; 69, pp. 471-480. [DOI: https://dx.doi.org/10.3233/CH-170345] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29332034]
197. Li, J.; Wang, P.; Ying, J.; Chen, Z.; Yu, S. Curcumin Attenuates Retinal Vascular Leakage by Inhibiting Calcium/Calmodulin-Dependent Protein Kinase II Activity in Streptozotocin-Induced Diabetes. Cell. Physiol. Biochem.; 2016; 39, pp. 1196-1208. [DOI: https://dx.doi.org/10.1159/000447826]
198. Li, J.; Wang, P.; Zhu, Y.; Chen, Z.; Shi, T.; Lei, W.; Yu, S. Curcumin Inhibits Neuronal Loss in the Retina and Elevates Ca2+/Calmodulin-Dependent Protein Kinase II Activity in Diabetic Rats. J. Ocul. Pharmacol. Ther.; 2015; 31, pp. 555-562. [DOI: https://dx.doi.org/10.1089/jop.2015.0006] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26207889]
199. Zuo, Z.F.; Zhang, Q.; Liu, X.Z. Protective Effects of Curcumin on Retinal Müller Cell in Early Diabetic Rats. Int. J. Ophthalmol.; 2013; 6, pp. 422-424. [DOI: https://dx.doi.org/10.3980/J.ISSN.2222-3959.2013.04.02]
200. Wang, C.; George, B.; Chen, S.; Feng, B.; Li, X.; Chakrabarti, S. Genotoxic Stress and Activation of Novel DNA Repair Enzymes in Human Endothelial Cells and in the Retinas and Kidneys of Streptozotocin Diabetic Rats. Diabetes Metab. Res. Rev.; 2012; 28, pp. 329-337. [DOI: https://dx.doi.org/10.1002/dmrr.2279]
201. Gupta, S.K.; Kumar, B.; Nag, T.C.; Agrawal, S.S.; Agrawal, R.; Agrawal, P.; Saxena, R.; Srivastava, S. Curcumin Prevents Experimental Diabetic Retinopathy in Rats through Its Hypoglycemic, Antioxidant, and Anti-Inflammatory Mechanisms. J. Ocul. Pharmacol. Ther.; 2011; 27, pp. 123-130. [DOI: https://dx.doi.org/10.1089/jop.2010.0123]
202. Mrudula, T.; Suryanarayana, P.; Srinivas, P.N.B.S.; Reddy, G.B. Effect of Curcumin on Hyperglycemia-Induced Vascular Endothelial Growth Factor Expression in Streptozotocin-Induced Diabetic Rat Retina. Biochem. Biophys. Res. Commun.; 2007; 361, pp. 528-532. [DOI: https://dx.doi.org/10.1016/j.bbrc.2007.07.059]
203. Kowluru, R.A.; Kanwar, M. Effects of Curcumin on Retinal Oxidative Stress and Inflammation in Diabetes. Nutr. Metab.; 2007; 4, 8. [DOI: https://dx.doi.org/10.1186/1743-7075-4-8] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17437639]
204. Kumar, P.A.; Haseeb, A.; Suryanarayana, P.; Ehtesham, N.Z.; Reddy, G.B. Elevated Expression of AlphaA- and AlphaB-Crystallins in Streptozotocin-Induced Diabetic Rat. Arch. Biochem. Biophys.; 2005; 444, pp. 77-83. [DOI: https://dx.doi.org/10.1016/j.abb.2005.09.021] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16309625]
205. Mendes, T.S.; Novais, E.A.; Badaró, E.; de Oliveira Dias, J.R.; Kniggendorf, V.; Lima-Filho, A.A.S.; Watanabe, S.; Farah, M.E.; Rodrigues, E.B. Antiangiogenic Effect of Intravitreal Curcumin in Experimental Model of Proliferative Retinopathy. Acta Ophthalmol.; 2020; 98, pp. e132-e133. [DOI: https://dx.doi.org/10.1111/aos.14179] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31273914]
206. Mirza, M.; Volz, C.; Karlstetter, M.; Langiu, M.; Somogyi, A.; Ruonala, M.O.; Tamm, E.R.; Jägle, H.; Langmann, T. Progressive Retinal Degeneration and Glial Activation in the CLN6 (Nclf) Mouse Model of Neuronal Ceroid Lipofuscinosis: A Beneficial Effect of DHA and Curcumin Supplementation. PLoS ONE; 2013; 8, e75963. [DOI: https://dx.doi.org/10.1371/annotation/ae907882-62e0-4803-8c00-35b30a649fe9]
207. Zhang, H.-J.; Xing, Y.-Q.; Jin, W.; Li, D.; Wu, K.; Lu, Y. Effects of Curcumin on Interleukin-23 and Interleukin-17 Expression in Rat Retina after Retinal Ischemia-Reperfusion Injury. Int. J. Clin. Exp. Pathol.; 2015; 8, pp. 9223-9231.
208. Wang, L.; Li, C.; Guo, H.; Kern, T.S.; Huang, K.; Zheng, L. Curcumin Inhibits Neuronal and Vascular Degeneration in Retina after Ischemia and Reperfusion Injury. PLoS ONE; 2011; 6, e23194. [DOI: https://dx.doi.org/10.1371/journal.pone.0023194]
209. Wang, S.; Ye, Q.; Tu, J.; Zhang, M.; Ji, B. Curcumin Protects against Hypertension Aggravated Retinal Ischemia/Reperfusion in a Rat Stroke Model. Clin. Exp. Hypertens.; 2017; 39, pp. 711-717. [DOI: https://dx.doi.org/10.1080/10641963.2017.1313854]
210. Chirapapaisan, N.; Uiprasertkul, M.; Chuncharunee, A. The Effect of Coenzyme Q10 and Curcumin on Chronic Methanol Intoxication Induced Retinopathy in Rats. J. Med. Assoc. Thai.; 2012; 95, pp. S76-S81.
211. Mazzolani, F.; Togni, S.; Giacomelli, L.; Eggenhoffner, R.; Franceschi, F. Oral Administration of a Curcumin-Phospholipid Formulation (Meriva®) for Treatment of Chronic Diabetic Macular Edema: A Pilot Study. Eur. Rev. Med. Pharmacol. Sci.; 2018; 22, pp. 3617-3625. [DOI: https://dx.doi.org/10.26355/EURREV_201806_15189]
212. Piano, I.; D’antongiovanni, V.; Testai, L.; Calderone, V.; Gargini, C. A Nutraceutical Strategy to Slowing Down the Progression of Cone Death in an Animal Model of Retinitis Pigmentosa. Front. Neurosci.; 2019; 13, 461. [DOI: https://dx.doi.org/10.3389/fnins.2019.00461]
213. Ortega, J.T.; Parmar, T.; Golczak, M.; Jastrzebska, B. Protective Effects of Flavonoids in Acute Models of Light-Induced Retinal Degeneration. Mol. Pharmacol.; 2021; 99, pp. 60-77. [DOI: https://dx.doi.org/10.1124/molpharm.120.000072] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33154094]
214. Kim, J.K.; Park, S.U. Quercetin and Its Role in Biological Functions: An Updated Review. EXCLI J.; 2018; 17, pp. 856-863. [DOI: https://dx.doi.org/10.17179/EXCLI2018-1538] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30233284]
215. Koyama, Y.; Kaidzu, S.; Kim, Y.C.; Matsuoka, Y.; Ishihara, T.; Ohira, A.; Tanito, M. Suppression of Light-Induced Retinal Degeneration by Quercetin via the AP-1 Pathway in Rats. Antioxidants; 2019; 8, 79. [DOI: https://dx.doi.org/10.3390/antiox8040079] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30934771]
216. Shao, Y.; Yu, H.; Yang, Y.; Li, M.; Hang, L.; Xu, X. A Solid Dispersion of Quercetin Shows Enhanced Nrf2 Activation and Protective Effects against Oxidative Injury in a Mouse Model of Dry Age-Related Macular Degeneration. Oxidative Med. Cell. Longev.; 2019; 2019, 1479571. [DOI: https://dx.doi.org/10.1155/2019/1479571] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31781321]
217. Wang, S.; Du, S.; Wang, W.; Zhang, F. Therapeutic Investigation of Quercetin Nanomedicine in a Zebrafish Model of Diabetic Retinopathy. Biomed. Pharmacother.; 2020; 130, 110573. [DOI: https://dx.doi.org/10.1016/j.biopha.2020.110573]
218. Ola, M.S.; Ahmed, M.M.; Shams, S.; Al-Rejaie, S.S. Neuroprotective Effects of Quercetin in Diabetic Rat Retina. Saudi J. Biol. Sci.; 2017; 24, pp. 1186-1194. [DOI: https://dx.doi.org/10.1016/j.sjbs.2016.11.017]
219. Kumar, B.; Gupta, S.K.; Nag, T.C.; Srivastava, S.; Saxena, R.; Jha, K.A.; Srinivasan, B.P. Retinal Neuroprotective Effects of Quercetin in Streptozotocin-Induced Diabetic Rats. Exp. Eye Res.; 2014; 125, pp. 193-202. [DOI: https://dx.doi.org/10.1016/j.exer.2014.06.009]
220. Chen, Y.; Li, F.; Meng, X.; Li, X. Suppression of Retinal Angiogenesis by Quercetin in a Rodent Model of Retinopathy of Prematurity. Zhonghua Yi Xue Za Zhi; 2015; 95, pp. 1113-1115. [DOI: https://dx.doi.org/10.3760/cma.j.issn.0376-2491.2015.14.018]
221. Zhou, X.; Li, G.; Yang, B.; Wu, J. Quercetin Enhances Inhibitory Synaptic Inputs and Reduces Excitatory Synaptic Inputs to OFF- and ON-Type Retinal Ganglion Cells in a Chronic Glaucoma Rat Model. Front. Neurosci.; 2019; 13, 672. [DOI: https://dx.doi.org/10.3389/fnins.2019.00672]
222. Arikan, S.; Ersan, I.; Karaca, T.; Kara, S.; Gencer, B.; Karaboga, I.; Tufan, H.A. Quercetin Protects the Retina by Reducing Apoptosis Due to Ischemia-Reperfusion Injury in a Rat Model. Arq. Bras. Oftalmol.; 2015; 78, pp. 100-104. [DOI: https://dx.doi.org/10.5935/0004-2749.20150026]
223. Thomson, L.R.; Toyoda, Y.; Langner, A.; Delori, F.C.; Garnett, K.M.; Craft, N.; Nichols, C.R.; Cheng, K.M.; Dorey, C.K. Elevated Retinal Zeaxanthin and Prevention of Light-Induced Photoreceptor Cell Death in Quail. Investig. Ophthalmol. Vis. Sci.; 2002; 43, pp. 3538-3549.
224. Yu, M.; Yan, W.; Beight, C. Lutein and Zeaxanthin Isomers Reduce Photoreceptor Degeneration in the Pde6b Rd10 Mouse Model of Retinitis Pigmentosa. Biomed. Res. Int.; 2018; 2018, 4374087. [DOI: https://dx.doi.org/10.1155/2018/4374087] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30643804]
225. Sahin, K.; Gencoglu, H.; Akdemir, F.; Orhan, C.; Tuzcu, M.; Sahin, N.; Yilmaz, I.; Juturu, V. Lutein and Zeaxanthin Isomers May Attenuate Photo-Oxidative Retinal Damage via Modulation of G Protein-Coupled Receptors and Growth Factors in Rats. Biochem. Biophys. Res. Commun.; 2019; 516, pp. 163-170. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31204054][DOI: https://dx.doi.org/10.1016/j.bbrc.2019.06.032]
226. Miranda, M.; Arnal, E.; Ahuja, S.; Alvarez-Nölting, R.; López-Pedrajas, R.; Ekström, P.; Bosch-Morell, F.; van Veen, T.; Romero, F.J. Antioxidants Rescue Photoreceptors in Rd1 Mice: Relationship with Thiol Metabolism. Free Radic. Biol. Med.; 2010; 48, pp. 216-222. [DOI: https://dx.doi.org/10.1016/j.freeradbiomed.2009.10.042] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19854264]
227. Yu, M.; Yan, W.; Beight, C. Lutein and Zeaxanthin Isomers Protect against Light-Induced Retinopathy via Decreasing Oxidative and Endoplasmic Reticulum Stress in BALB/CJ Mice. Nutrients; 2018; 10, 842. [DOI: https://dx.doi.org/10.3390/nu10070842] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29958415]
228. Kowluru, R.A.; Menon, B.; Gierhart, D.L. Beneficial Effect of Zeaxanthin on Retinal Metabolic Abnormalities in Diabetic Rats. Investig. Ophthalmol. Vis. Sci.; 2008; 49, pp. 1645-1651. [DOI: https://dx.doi.org/10.1167/iovs.07-0764]
229. Sasaki, M.; Yuki, K.; Kurihara, T.; Miyake, S.; Noda, K.; Kobayashi, S.; Ishida, S.; Tsubota, K.; Ozawa, Y. Biological Role of Lutein in the Light-Induced Retinal Degeneration. J. Nutr. Biochem.; 2012; 23, pp. 423-429. [DOI: https://dx.doi.org/10.1016/j.jnutbio.2011.01.006]
230. Tuzcu, M.; Orhan, C.; Muz, O.E.; Sahin, N.; Juturu, V.; Sahin, K. Lutein and Zeaxanthin Isomers Modulates Lipid Metabolism and the Inflammatory State of Retina in Obesity-Induced High-Fat Diet Rodent Model. BMC Ophthalmol.; 2017; 17, 129. [DOI: https://dx.doi.org/10.1186/s12886-017-0524-1]
231. Biswal, M.R.; Justis, B.D.; Han, P.; Li, H.; Gierhart, D.; Dorey, C.K.; Lewin, A.S. Daily Zeaxanthin Supplementation Prevents Atrophy of the Retinal Pigment Epithelium (RPE) in a Mouse Model of Mitochondrial Oxidative Stress. PLoS ONE; 2018; 13, e0203816. [DOI: https://dx.doi.org/10.1371/journal.pone.0203816]
232. Dorrell, M.I.; Aguilar, E.; Jacobson, R.; Yanes, O.; Gariano, R.; Heckenlively, J.; Banin, E.; Ramirez, G.A.; Gasmi, M.; Bird, A. et al. Antioxidant or Neurotrophic Factor Treatment Preserves Function in a Mouse Model of Neovascularization-Associated Oxidative Stress. J. Clin. Investig.; 2009; 119, pp. 611-623. [DOI: https://dx.doi.org/10.1172/JCI35977]
233. Toomey, M.B.; McGraw, K.J. The Effects of Dietary Carotenoid Supplementation and Retinal Carotenoid Accumulation on Vision-Mediated Foraging in the House Finch. PLoS ONE; 2011; 6, e21653. [DOI: https://dx.doi.org/10.1371/journal.pone.0021653] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21747917]
234. Perdices, L.; Fuentes-Broto, L.; Segura, F.; Cavero, A.; Orduna-Hospital, E.; Insa-Sánchez, G.; Sánchez-Cano, A.; Fernández-Sánchez, L.; Cuenca, N.; Pinilla, I. Systemic Epigallocatechin Gallate Protects against Retinal Degeneration and Hepatic Oxidative Stress in the P23H-1 Rat. Neural Regen. Res.; 2022; 17, pp. 625-631. [DOI: https://dx.doi.org/10.4103/1673-5374.320990] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34380903]
235. Perdices, L.; Fuentes-Broto, L.; Segura, F.; Cuenca, N.; Orduna-Hospital, E.; Pinilla, I. Epigallocatechin Gallate Slows Retinal Degeneration, Reduces Oxidative Damage, and Modifies Circadian Rhythms in P23H Rats. Antioxidants; 2020; 9, 718. [DOI: https://dx.doi.org/10.3390/antiox9080718] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32784376]
236. Qi, S.; Wang, C.; Song, D.; Song, Y.; Dunaief, J.L. Intraperitoneal Injection of (−)-Epigallocatechin-3-Gallate Protects against Light-Induced Photoreceptor Degeneration in the Mouse Retina. Mol. Vis.; 2017; 23, pp. 171-178. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28458506]
237. Costa, B.L. da S.A. da; Fawcett, R.; Li, G.Y.; Safa, R.; Osborne, N.N. Orally Administered Epigallocatechin Gallate Attenuates Light-Induced Photoreceptor Damage. Brain Res. Bull.; 2008; 76, pp. 412-423. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18502318][DOI: https://dx.doi.org/10.1016/j.brainresbull.2008.01.022]
238. Zhang, B.; Osborne, N.N. Oxidative-Induced Retinal Degeneration Is Attenuated by Epigallocatechin Gallate. Brain Res.; 2006; 1124, pp. 176-187. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17084820][DOI: https://dx.doi.org/10.1016/j.brainres.2006.09.067]
239. Yang, Y.; Qin, Y.J.; Yip, Y.W.Y.; Chan, K.P.; Chu, K.O.; Chu, W.K.; Ng, T.K.; Pang, C.P.; Chan, S.O. Green Tea Catechins Are Potent Anti-Oxidants That Ameliorate Sodium Iodate-Induced Retinal Degeneration in Rats. Sci. Rep.; 2016; 6, 29546. [DOI: https://dx.doi.org/10.1038/srep29546]
240. Emoto, Y.; Yoshizawa, K.; Kinoshita, Y.; Yuri, T.; Yuki, M.; Sayama, K.; Shikata, N.; Tsubura, A. Green Tea Extract Suppresses N-Methyl-N-Nitrosourea-Induced Photoreceptor Apoptosis in Sprague-Dawley Rats. Graefe’s Arch. Clin. Exp. Ophthalmol.; 2014; 252, pp. 1377-1384. [DOI: https://dx.doi.org/10.1007/s00417-014-2702-7]
241. Chen, F.; Jiang, L.; Shen, C.; Wan, H.; Xu, L.; Wang, N.; Jonas, J.B. Neuroprotective Effect of Epigallocatechin-3-Gallate against N-Methyl-D-Aspartate-Induced Excitotoxicity in the Adult Rat Retina. Acta Ophthalmol.; 2012; 90, pp. e609-e615. [DOI: https://dx.doi.org/10.1111/j.1755-3768.2012.02502.x]
242. Al-Gayyar, M.M.H.; Matragoon, S.; Pillai, B.A.; Ali, T.K.; Abdelsaid, M.A.; El-Remessy, A.B. Epicatechin Blocks Pro-Nerve Growth Factor (ProNGF)-Mediated Retinal Neurodegeneration via Inhibition of P75 Neurotrophin Receptor Expression in a Rat Model of Diabetes [Corrected]. Diabetologia; 2011; 54, pp. 669-680. [DOI: https://dx.doi.org/10.1007/s00125-010-1994-3]
243. Yang, Y.; Xu, C.; Chen, Y.; Liang, J.J.; Xu, Y.; Chen, S.L.; Huang, S.; Yang, Q.; Cen, L.P.; Pang, C.P. et al. Green Tea Extract Ameliorates Ischemia-Induced Retinal Ganglion Cell Degeneration in Rats. Oxidative Med. Cell Longev.; 2019; 2019, 8407206. [DOI: https://dx.doi.org/10.1155/2019/8407206] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31379990]
244. Shen, C.; Chen, L.; Jiang, L.; Lai, T.Y.Y. Neuroprotective Effect of Epigallocatechin-3-Gallate in a Mouse Model of Chronic Glaucoma. Neurosci. Lett.; 2015; 600, pp. 132-136. [DOI: https://dx.doi.org/10.1016/j.neulet.2015.06.002] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26050640]
245. Detaram, H.D.; Liew, G.; Lewis, J.R.; Bondonno, N.P.; Bondonno, C.P.; Van Vu, K.; Burlutsky, G.; Hodgson, J.M.; Mitchell, P.; Gopinath, B. Dietary Flavonoids Are Associated with Longitudinal Treatment Outcomes in Neovascular Age-Related Macular Degeneration. Eur. J. Nutr.; 2021; 60, pp. 4243-4250. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34009430][DOI: https://dx.doi.org/10.1007/s00394-021-02582-4]
246. Valdés-Sánchez, L.; García-Delgado, A.B.; Montero-Sánchez, A.; de la Cerda, B.; Lucas, R.; Peñalver, P.; Morales, J.C.; Bhattacharya, S.S.; Díaz-Corrales, F.J. The Resveratrol Prodrug JC19 Delays Retinal Degeneration in Rd10 Mice. Adv. Exp. Med. Biol.; 2019; 1185, pp. 457-462. [DOI: https://dx.doi.org/10.1007/978-3-030-27378-1_75] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31884654]
247. Qi, L.S.; Yao, L.; Liu, W.; Duan, W.X.; Wang, B.; Zhang, L.; Zhang, Z.M. Sirtuin Type 1 Mediates the Retinal Protective Effect of Hydrogen-Rich Saline Against Light-Induced Damage in Rats. Investig. Ophthalmol. Vis. Sci.; 2015; 56, pp. 8268-8279. [DOI: https://dx.doi.org/10.1167/iovs.15-17034]
248. Kubota, S.; Kurihara, T.; Ebinuma, M.; Kubota, M.; Yuki, K.; Sasaki, M.; Noda, K.; Ozawa, Y.; Oike, Y.; Ishida, S. et al. Resveratrol Prevents Light-Induced Retinal Degeneration via Suppressing Activator Protein-1 Activation. Am. J. Pathol.; 2010; 177, pp. 1725-1731. [DOI: https://dx.doi.org/10.2353/ajpath.2010.100098] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20709795]
249. Wang, N.; Luo, Z.; Jin, M.; Sheng, W.; Wang, H.T.; Long, X.; Wu, Y.; Hu, P.; Xu, H.; Zhang, X. Exploration of Age-Related Mitochondrial Dysfunction and the Anti-Aging Effects of Resveratrol in Zebrafish Retina. Aging; 2019; 11, pp. 3117-3137. [DOI: https://dx.doi.org/10.18632/aging.101966]
250. Sheng, W.; Lu, Y.; Mei, F.; Wang, N.; Liu, Z.Z.; Han, Y.Y.; Wang, H.T.; Zou, S.; Xu, H.; Zhang, X. Effect of Resveratrol on Sirtuins, OPA1, and Fis1 Expression in Adult Zebrafish Retina. Investig. Ophthalmol. Vis. Sci.; 2018; 59, pp. 4542-4551. [DOI: https://dx.doi.org/10.1167/iovs.18-24539]
251. Liu, Z.; Wu, Z.; Li, J.; Marmalidou, A.; Zhang, R.; Yu, M. Protective Effect of Resveratrol against Light-Induced Retinal Degeneration in Aged SAMP8 Mice. Oncotarget; 2017; 8, pp. 65778-65788. [DOI: https://dx.doi.org/10.18632/oncotarget.19473]
252. Courtaut, F.; Aires, V.; Acar, N.; Bretillon, L.; Guerrera, I.C.; Chhuon, C.; de Barros, J.P.P.; Olmiere, C.; Delmas, D. RESVEGA, a Nutraceutical Omega-3/Resveratrol Supplementation, Reduces Angiogenesis in a Preclinical Mouse Model of Choroidal Neovascularization. Int. J. Mol. Sci.; 2021; 22, 11023. [DOI: https://dx.doi.org/10.3390/ijms222011023]
253. Nagai, N.; Kubota, S.; Tsubota, K.; Ozawa, Y. Resveratrol Prevents the Development of Choroidal Neovascularization by Modulating AMP-Activated Protein Kinase in Macrophages and Other Cell Types. J. Nutr. Biochem.; 2014; 25, pp. 1218-1225. [DOI: https://dx.doi.org/10.1016/j.jnutbio.2014.05.015] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25091551]
254. Kubota, S.; Ozawa, Y.; Kurihara, T.; Sasaki, M.; Yuki, K.; Miyake, S.; Noda, K.; Ishida, S.; Tsubota, K. Roles of AMP-Activated Protein Kinase in Diabetes-Induced Retinal Inflammation. Investig. Ophthalmol. Vis. Sci.; 2011; 52, pp. 9142-9148. [DOI: https://dx.doi.org/10.1167/iovs.11-8041] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22058332]
255. Kim, Y.H.; Kim, Y.S.; Roh, G.S.; Choi, W.S.; Cho, G.J. Resveratrol Blocks Diabetes-Induced Early Vascular Lesions and Vascular Endothelial Growth Factor Induction in Mouse Retinas. Acta Ophthalmol.; 2012; 90, pp. e31-e37. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21914146][DOI: https://dx.doi.org/10.1111/j.1755-3768.2011.02243.x]
256. Kim, Y.H.; Kim, Y.S.; Kang, S.S.; Cho, G.J.; Choi, W.S. Resveratrol Inhibits Neuronal Apoptosis and Elevated Ca2+/Calmodulin-Dependent Protein Kinase II Activity in Diabetic Mouse Retina. Diabetes; 2010; 59, pp. 1825-1835. [DOI: https://dx.doi.org/10.2337/db09-1431] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20424226]
257. Zeng, K.; Wang, Y.; Huang, L.; Song, Y.; Yu, X.; Deng, B.; Zhou, X. Resveratrol Inhibits Neural Apoptosis and Regulates RAX/P-PKR Expression in Retina of Diabetic Rats. Nutr. Neurosci.; 2021; 25, pp. 1-10. [DOI: https://dx.doi.org/10.1080/1028415X.2021.1990462] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34693895]
258. Soufi, F.G.; Mohammad-nejad, D.; Ahmadieh, H. Resveratrol Improves Diabetic Retinopathy Possibly through Oxidative Stress—Nuclear Factor ΚB—Apoptosis Pathway. Pharmacol. Rep.; 2012; 64, pp. 1505-1514. [DOI: https://dx.doi.org/10.1016/S1734-1140(12)70948-9]
259. Ghadiri Soufi, F.; Arbabi-Aval, E.; Rezaei Kanavi, M.; Ahmadieh, H. Anti-Inflammatory Properties of Resveratrol in the Retinas of Type 2 Diabetic Rats. Clin. Exp. Pharmacol. Physiol.; 2015; 42, pp. 63-68. [DOI: https://dx.doi.org/10.1111/1440-1681.12326]
260. Al-Hussaini, H.; Kilarkaje, N. Effects of Trans-Resveratrol on Type 1 Diabetes-Induced Inhibition of Retinoic Acid Metabolism Pathway in Retinal Pigment Epithelium of Dark Agouti Rats. Eur. J. Pharmacol.; 2018; 834, pp. 142-151. [DOI: https://dx.doi.org/10.1016/j.ejphar.2018.07.028]
261. Al-Hussaini, H.; Kittaneh, R.S.; Kilarkaje, N. Effects of Trans-Resveratrol on Type 1 Diabetes-Induced up-Regulation of Apoptosis and Mitogen-Activated Protein Kinase Signaling in Retinal Pigment Epithelium of Dark Agouti Rats. Eur. J. Pharmacol.; 2021; 904, 174167. [DOI: https://dx.doi.org/10.1016/j.ejphar.2021.174167]
262. Liu, X.Q.; Wu, B.J.; Pan, W.H.T.; Zhang, X.M.; Liu, J.H.; Chen, M.M.; Chao, F.P.; Chao, H.M. Resveratrol Mitigates Rat Retinal Ischemic Injury: The Roles of Matrix Metalloproteinase-9, Inducible Nitric Oxide, and Heme Oxygenase-1. J. Ocul. Pharmacol. Ther.; 2013; 29, pp. 33-40. [DOI: https://dx.doi.org/10.1089/jop.2012.0141]
263. Dong, Y.; Wan, G.; Yan, P.; Qian, C.; Li, F.; Peng, G. Fabrication of Resveratrol Coated Gold Nanoparticles and Investigation of Their Effect on Diabetic Retinopathy in Streptozotocin Induced Diabetic Rats. J. Photochem. Photobiol. B; 2019; 195, pp. 51-57. [DOI: https://dx.doi.org/10.1016/j.jphotobiol.2019.04.012] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31082734]
264. Chen, Y.; Meng, J.; Li, H.; Wei, H.; Bi, F.; Liu, S.; Tang, K.; Guo, H.; Liu, W. Resveratrol Exhibits an Effect on Attenuating Retina Inflammatory Condition and Damage of Diabetic Retinopathy via PON1. Exp. Eye Res.; 2019; 181, pp. 356-366. [DOI: https://dx.doi.org/10.1016/j.exer.2018.11.023] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30503749]
265. Huang, W.; Li, G.; Qiu, J.; Gonzalez, P.; Challa, P. Protective Effects of Resveratrol in Experimental Retinal Detachment. PLoS ONE; 2013; 8, e75735. [DOI: https://dx.doi.org/10.1371/journal.pone.0075735] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24040416]
266. Hsu, Y.A.; Chen, C.S.; Wang, Y.C.; Lin, E.S.; Chang, C.Y.; Chen, J.J.Y.; Wu, M.Y.; Lin, H.J.; Wan, L. Anti-Inflammatory Effects of Resveratrol on Human Retinal Pigment Cells and a Myopia Animal Model. Curr. Issues Mol. Biol.; 2021; 43, pp. 716-727. [DOI: https://dx.doi.org/10.3390/cimb43020052] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34287272]
267. Hua, J.; Guerin, K.I.; Chen, J.; Michán, S.; Stahl, A.; Krah, N.M.; Seaward, M.R.; Dennison, R.J.; Juan, A.M.; Hatton, C.J. et al. Resveratrol Inhibits Pathologic Retinal Neovascularization in Vldlr(-/-) Mice. Investig. Ophthalmol. Vis. Sci.; 2011; 52, pp. 2809-2816. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21282584][DOI: https://dx.doi.org/10.1167/iovs.10-6496]
268. Li, C.; Wang, L.; Huang, K.; Zheng, L. Endoplasmic Reticulum Stress in Retinal Vascular Degeneration: Protective Role of Resveratrol. Investig. Ophthalmol. Vis. Sci.; 2012; 53, pp. 3241-3249. [DOI: https://dx.doi.org/10.1167/iovs.11-8406]
269. Kim, W.T.; Suh, E.S. Retinal Protective Effects of Resveratrol via Modulation of Nitric Oxide Synthase on Oxygen-Induced Retinopathy. Korean J. Ophthalmol.; 2010; 24, pp. 108-118. [DOI: https://dx.doi.org/10.3341/kjo.2010.24.2.108]
270. Ji, K.; Li, Z.; Lei, Y.; Xu, W.; Ouyang, L.; He, T.; Xing, Y. Resveratrol Attenuates Retinal Ganglion Cell Loss in a Mouse Model of Retinal Ischemia Reperfusion Injury via Multiple Pathways. Exp. Eye Res.; 2021; 209, 108683. [DOI: https://dx.doi.org/10.1016/j.exer.2021.108683]
271. Luo, J.; He, T.; Yang, J.; Yang, N.; Li, Z.; Xing, Y. SIRT1 Is Required for the Neuroprotection of Resveratrol on Retinal Ganglion Cells after Retinal Ischemia-Reperfusion Injury in Mice. Graefe’s Arch. Clin. Exp. Ophthalmol.; 2020; 258, pp. 335-344. [DOI: https://dx.doi.org/10.1007/s00417-019-04580-z]
272. Seong, H.; Ryu, J.; Yoo, W.S.; Kim, S.J.; Han, Y.S.; Park, J.M.; Kang, S.S.; Seo, S.W. Resveratrol Ameliorates Retinal Ischemia/Reperfusion Injury in C57BL/6J Mice via Downregulation of Caspase-3. Curr. Eye Res.; 2017; 42, pp. 1650-1658. [DOI: https://dx.doi.org/10.1080/02713683.2017.1344713]
273. Pang, Y.; Qin, M.; Hu, P.; Ji, K.; Xiao, R.; Sun, N.; Pan, X.; Zhang, X. Resveratrol Protects Retinal Ganglion Cells against Ischemia Induced Damage by Increasing Opa1 Expression. Int. J. Mol. Med.; 2020; 46, pp. 1707-1720. [DOI: https://dx.doi.org/10.3892/ijmm.2020.4711] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32901846]
274. Vin, A.P.; Hu, H.; Zhai, Y.; Von Zee, C.L.; Logeman, A.; Stubbs, E.B.; Perlman, J.I.; Bu, P. Neuroprotective Effect of Resveratrol Prophylaxis on Experimental Retinal Ischemic Injury. Exp. Eye Res.; 2013; 108, pp. 72-75. [DOI: https://dx.doi.org/10.1016/j.exer.2012.11.022] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23287437]
275. Deng, C.; Chen, S.; Li, X.; Luo, H.; Zhang, Q.; Hu, P.; Wang, F.; Xiong, C.; Sun, T.; Zhang, X. Role of the PGE2 Receptor in Ischemia-Reperfusion Injury of the Rat Retina. Mol. Vis.; 2020; 26, pp. 36-47. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32165825]
276. Luo, H.; Zhuang, J.; Hu, P.; Ye, W.; Chen, S.; Pang, Y.; Li, N.; Deng, C.; Zhang, X. Resveratrol Delays Retinal Ganglion Cell Loss and Attenuates Gliosis-Related Inflammation From Ischemia-Reperfusion Injury. Investig. Ophthalmol. Vis. Sci.; 2018; 59, pp. 3879-3888. [DOI: https://dx.doi.org/10.1167/iovs.18-23806]
277. Cao, K.; Ishida, T.; Fang, Y.; Shinohara, K.; Li, X.; Nagaoka, N.; Ohno-Matsui, K.; Yoshida, T. Protection of the Retinal Ganglion Cells: Intravitreal Injection of Resveratrol in Mouse Model of Ocular Hypertension. Investig. Ophthalmol. Vis. Sci.; 2020; 61, 13. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32176263][DOI: https://dx.doi.org/10.1167/iovs.61.3.13]
278. Zhang, X.; Feng, Y.; Wang, Y.; Wang, J.; Xiang, D.; Niu, W.; Yuan, F. Resveratrol Ameliorates Disorders of Mitochondrial Biogenesis and Dynamics in a Rat Chronic Ocular Hypertension Model. Life Sci.; 2018; 207, pp. 234-245. [DOI: https://dx.doi.org/10.1016/j.lfs.2018.06.010] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29894715]
279. Razali, N.; Agarwal, R.; Agarwal, P.; Tripathy, M.; Kapitonova, M.Y.; Kutty, M.K.; Smirnov, A.; Khalid, Z.; Ismail, N.M. Topical Trans-Resveratrol Ameliorates Steroid-Induced Anterior and Posterior Segment Changes in Rats. Exp. Eye Res.; 2016; 143, pp. 9-16. [DOI: https://dx.doi.org/10.1016/j.exer.2015.09.014]
280. Pirhan, D.; Yüksel, N.; Emre, E.; Cengiz, A.; Kürşat Yildiz, D. Riluzole- and Resveratrol-Induced Delay of Retinal Ganglion Cell Death in an Experimental Model of Glaucoma. Curr. Eye Res.; 2016; 41, pp. 59-69. [DOI: https://dx.doi.org/10.3109/02713683.2015.1004719]
281. Lindsey, J.D.; Duong-Polk, K.X.; Hammond, D.; Leung, C.K.-S.; Weinreb, R.N. Protection of Injured Retinal Ganglion Cell Dendrites and Unfolded Protein Response Resolution after Long-Term Dietary Resveratrol. Neurobiol. Aging; 2015; 36, pp. 1969-1981. [DOI: https://dx.doi.org/10.1016/j.neurobiolaging.2014.12.021]
282. Kim, S.H.; Park, J.H.; Kim, Y.J.; Park, K.H. The Neuroprotective Effect of Resveratrol on Retinal Ganglion Cells after Optic Nerve Transection. Mol. Vis.; 2013; 19, pp. 1667-1676.
283. Kubota, S.; Kurihara, T.; Mochimar, H.; Satofuka, S.; Noda, K.; Ozawa, Y.; Oike, Y.; Ishida, S.; Tsubota, K. Prevention of Ocular Inflammation in Endotoxin-Induced Uveitis with Resveratrol by Inhibiting Oxidative Damage and Nuclear Factor-KappaB Activation. Investig. Ophthalmol. Vis. Sci.; 2009; 50, pp. 3512-3519. [DOI: https://dx.doi.org/10.1167/iovs.08-2666] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19279313]
284. García-Layana, A.; Recalde, S.; Hernandez, M.; Abraldes, M.J.; Nascimento, J.; Hernández-Galilea, E.; Olmedilla-Alonso, B.; Escobar-Barranco, J.J.; Zapata, M.A.; Silva, R. et al. A Randomized Study of Nutritional Supplementation in Patients with Unilateral Wet Age-Related Macular Degeneration. Nutrients; 2021; 13, 1253. [DOI: https://dx.doi.org/10.3390/nu13041253] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33920232]
285. Pinelli, R.; Bertelli, M.; Scaffidi, E.; Polzella, M.; Fulceri, F.; Biagioni, F.; Fornai, F. Nutraceuticals for Dry Age-Related Macular Degeneration: A Case Report Based on Novel Pathogenic and Morphological Insights. Arch. Ital. Biol.; 2020; 158, pp. 24-34. [DOI: https://dx.doi.org/10.12871/00039829202013] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32575145]
286. Richer, S.; Stiles, W.; Ulanski, L.; Carroll, D.; Podella, C. Observation of Human Retinal Remodeling in Octogenarians with a Resveratrol Based Nutritional Supplement. Nutrients; 2013; 5, pp. 1989-2005. [DOI: https://dx.doi.org/10.3390/nu5061989] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23736827]
287. Baltã, F.; Cristescu, I.E.; Mirescu, A.E.; Baltã, G.; Tofolean, I.T. Effect of A Multinutrient Complex on Retinal Microcirculation in Diabetic Patients Investigated Using an Adaptive Optics Retinal Camera. Acta Endocrinol.; 2020; 16, pp. 389-395. [DOI: https://dx.doi.org/10.4183/aeb.2020.389]
288. Eckhert, C.D. Differential Effects of Riboflavin and RRR-Alpha-Tocopheryl Acetate on the Survival of Newborn RCS Rats with Inheritable Retinal Degeneration. J. Nutr.; 1987; 117, pp. 208-211. [DOI: https://dx.doi.org/10.1093/jn/117.1.208]
289. Orhan, C.; Tuzcu, M.; Gencoglu, H.; Sahin, E.; Sahin, N.; Ozercan, I.H.; Namjoshi, T.; Srivastava, V.; Morde, A.; Rai, D. et al. Different Doses of β-Cryptoxanthin May Secure the Retina from Photooxidative Injury Resulted from Common LED Sources. Oxid Med. Cell. Longev.; 2021; 2021, 6672525. [DOI: https://dx.doi.org/10.1155/2021/6672525]
290. Wong, P.; Markey, M.; Rapp, C.M.; Darrow, R.M.; Ziesel, A.; Organisciak, D.T. Enhancing the Efficacy of AREDS Antioxidants in Light-Induced Retinal Degeneration. Mol. Vis.; 2017; 23, pp. 718-739.
291. Ramchani-Ben Othman, K.; Cercy, C.; Amri, M.; Doly, M.; Ranchon-Cole, I. Dietary Supplement Enriched in Antioxidants and Omega-3 Protects from Progressive Light-Induced Retinal Degeneration. PLoS ONE; 2015; 10, e0128395. [DOI: https://dx.doi.org/10.1371/JOURNAL.PONE.0128395]
292. Rapp, L.M.; Fisher, P.L.; Suh, D.W. Evaluation of Retinal Susceptibility to Light Damage in Pigmented Rats Supplemented with Beta-Carotene. Curr. Eye Res.; 1996; 15, pp. 219-223. [DOI: https://dx.doi.org/10.3109/02713689608997417]
293. Liu, Y.; Zhang, D.; Hu, J.; Liu, G.; Chen, J.; Sun, L.; Jiang, Z.; Zhang, X.; Chen, Q.; Ji, B. Visible Light-Induced Lipid Peroxidation of Unsaturated Fatty Acids in the Retina and the Inhibitory Effects of Blueberry Polyphenols. J. Agric. Food Chem.; 2015; 63, pp. 9295-9305. [DOI: https://dx.doi.org/10.1021/acs.jafc.5b04341] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26456696]
294. Chu, Z.; Ma, G.; Sun, X.; Xu, Z.; Zhang, J. Grape Seed Extracts Inhibit the Overexpression of Inflammatory Cytokines in Mouse Retinas and ARPE-19 Cells: Potentially Useful Dietary Supplement for Age-Related Eye Dysfunction. J. Med. Food; 2020; 23, pp. 499-507. [DOI: https://dx.doi.org/10.1089/jmf.2019.4558] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32119812]
295. Yu, C.C.; Nandrot, E.F.; Dun, Y.; Finnemann, S.C. Dietary Antioxidants Prevent Age-Related Retinal Pigment Epithelium Actin Damage and Blindness in Mice Lacking Avβ5 Integrin. Free Radic. Biol. Med.; 2012; 52, pp. 660-670. [DOI: https://dx.doi.org/10.1016/j.freeradbiomed.2011.11.021] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22178979]
296. Fliesler, S.J.; Peachey, N.S.; Herron, J.; Hines, K.M.; Weinstock, N.I.; Ramachandra Rao, S.; Xu, L. Prevention of Retinal Degeneration in a Rat Model of Smith-Lemli-Opitz Syndrome. Sci. Rep.; 2018; 8, 1286. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29352199][DOI: https://dx.doi.org/10.1038/s41598-018-19592-8]
297. Fernández-Robredo, P.; Sádaba, L.M.; Salinas-Alamán, A.; Recalde, S.; Rodríguez, J.A.; García-Layana, A. Effect of Lutein and Antioxidant Supplementation on VEGF Expression, MMP-2 Activity, and Ultrastructural Alterations in Apolipoprotein E-Deficient Mouse. Oxidative Med. Cell. Longev.; 2013; 2013, 213505. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23738034][DOI: https://dx.doi.org/10.1155/2013/213505]
298. Kowluru, R.A.; Kanwar, M.; Chan, P.S.; Zhang, J.P. Inhibition of Retinopathy and Retinal Metabolic Abnormalities in Diabetic Rats with AREDS-Based Micronutrients. Arch. Ophthalmol.; 2008; 126, pp. 1266-1272. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18779489][DOI: https://dx.doi.org/10.1001/archopht.126.9.1266]
299. McClinton, K.J.; Aliani, M.; Kuny, S.; Sauvé, Y.; Suh, M. Differential Effect of a Carotenoid-Rich Diet on Retina Function in Non-Diabetic and Diabetic Rats. Nutr. Neurosci.; 2020; 23, pp. 838-848. [DOI: https://dx.doi.org/10.1080/1028415X.2018.1563664]
300. Kowluru, R.A.; Tang, J.; Kern, T.S. Abnormalities of Retinal Metabolism in Diabetes and Experimental Galactosemia. VII. Effect of Long-Term Administration of Antioxidants on the Development of Retinopathy. Diabetes; 2001; 50, pp. 1938-1942. [DOI: https://dx.doi.org/10.2337/diabetes.50.8.1938]
301. Kowluru, R.A.; Engerman, R.L.; Kern, T.S. Abnormalities of Retinal Metabolism in Diabetes or Experimental Galactosemia. VI. Comparison of Retinal and Cerebral Cortex Metabolism, and Effects of Antioxidant Therapy. Free Radic. Biol. Med.; 1999; 26, pp. 371-378. [DOI: https://dx.doi.org/10.1016/S0891-5849(98)00210-X]
302. Ju, W.K.; Shim, M.S.; Kim, K.Y.; Bu, J.H.; Park, T.L.; Ahn, S.; Weinreb, R.N. Ubiquinol Promotes Retinal Ganglion Cell Survival and Blocks the Apoptotic Pathway in Ischemic Retinal Degeneration. Biochem. Biophys. Res. Commun.; 2018; 503, pp. 2639-2645. [DOI: https://dx.doi.org/10.1016/j.bbrc.2018.08.016]
303. Bernardo-Colon, A.; Vest, V.; Clark, A.; Cooper, M.L.; Calkins, D.J.; Harrison, F.E.; Rex, T.S. Antioxidants Prevent Inflammation and Preserve the Optic Projection and Visual Function in Experimental Neurotrauma. Cell Death Dis.; 2018; 9, 1097. [DOI: https://dx.doi.org/10.1038/s41419-018-1061-4] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30367086]
304. Braakhuis, A.; Raman, R.; Vaghefi, E. The Association between Dietary Intake of Antioxidants and Ocular Disease. Diseases; 2017; 5, 3. [DOI: https://dx.doi.org/10.3390/diseases5010003] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28933356]
305. Ou, C.; Jiang, P.; Tian, Y.; Yao, Z.; Yang, Y.; Peng, J.; Zeng, M.; Song, H.; Peng, Q. Fructus Lycii and Salvia Miltiorrhiza Bunge Extract Alleviate Retinitis Pigmentosa through Nrf2/HO-1 Signaling Pathway. J. Ethnopharmacol.; 2021; 273, 113993. [DOI: https://dx.doi.org/10.1016/j.jep.2021.113993] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33684515]
306. Chang, J.S.; Lee, Y.J.; Wilkie, D.A.; Lin, C.T. The Neuroprotective and Antioxidative Effects of Submicron and Blended Lycium Barbarum in Experimental Retinal Degeneration in Rats. J. Vet. Med. Sci.; 2018; 80, pp. 1108-1115. [DOI: https://dx.doi.org/10.1292/jvms.17-0623] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29760314]
307. Tang, L.; Bao, S.; Du, Y.; Jiang, Z.; Wuliji, A.O.; Ren, X.; Zhang, C.; Chu, H.; Kong, L.; Ma, H. Antioxidant Effects of Lycium Barbarum Polysaccharides on Photoreceptor Degeneration in the Light-Exposed Mouse Retina. Biomed. Pharmacother.; 2018; 103, pp. 829-837. [DOI: https://dx.doi.org/10.1016/j.biopha.2018.04.104] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29684862]
308. Yeh, P.T.; Chen, Y.J.; Lin, N.C.; Yeh, A.I.; Yang, C.H. The Ocular Protective Effects of Nano/Submicron Particles Prepared from Lycium Barbarum Fruits Against Oxidative Stress in an Animal Model. J. Ocul. Pharmacol. Ther.; 2020; 36, pp. 179-189. [DOI: https://dx.doi.org/10.1089/jop.2019.0048] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31951153]
309. Wang, J.; Yao, Y.; Liu, X.; Wang, K.; Zhou, Q.; Tang, Y. Protective Effects of Lycium Barbarum Polysaccharides on Blood-Retinal Barrier via ROCK1 Pathway in Diabetic Rats. Am. J. Transl. Res.; 2019; 11, pp. 6304-6315.
310. Liu, J.; Baum, L.; Yu, S.; Lin, Y.; Xiong, G.; Chang, R.C.-C.; So, K.F.; Chiu, K. Preservation of Retinal Function Through Synaptic Stabilization in Alzheimer’s Disease Model Mouse Retina by Lycium Barbarum Extracts. Front. Aging Neurosci.; 2022; 13, 788798. [DOI: https://dx.doi.org/10.3389/fnagi.2021.788798]
311. Wu, I.H.; Chan, S.M.; Lin, C.T. The Neuroprotective Effect of Submicron and Blended Lycium Barbarum for Experiment Retinal Ischemia and Reperfusion Injury in Rats. J. Vet. Med. Sci.; 2020; 82, pp. 1719-1728. [DOI: https://dx.doi.org/10.1292/jvms.19-0646]
312. Mi, X.S.; Feng, Q.; Lo, A.; Chang, R.; Chung, S.; So, K.F. Lycium Barbarum Polysaccharides Related RAGE and Aβ Levels in the Retina of Mice with Acute Ocular Hypertension and Promote Maintenance of Blood Retinal Barrier. Neural Regen. Res.; 2020; 15, pp. 2344-2352. [DOI: https://dx.doi.org/10.4103/1673-5374.284998]
313. Mi, X.S.; Feng, Q.; Lo, A.C.Y.; Chang, R.C.C.; Lin, B.; Chung, S.K.; So, K.F. Protection of Retinal Ganglion Cells and Retinal Vasculature by Lycium Barbarum Polysaccharides in a Mouse Model of Acute Ocular Hypertension. PLoS ONE; 2012; 7, e45469. [DOI: https://dx.doi.org/10.1371/journal.pone.0045469] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23094016]
314. Chan, H.C.; Chang, R.C.C.; Koon-Ching Ip, A.; Chiu, K.; Yuen, W.H.; Zee, S.Y.; So, K.F. Neuroprotective Effects of Lycium Barbarum Lynn on Protecting Retinal Ganglion Cells in an Ocular Hypertension Model of Glaucoma. Exp. Neurol.; 2007; 203, pp. 269-273. [DOI: https://dx.doi.org/10.1016/j.expneurol.2006.05.031] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17045262]
315. Lakshmanan, Y.; Wong, F.S.Y.; Yu, W.Y.; Li, S.Z.C.; Choi, K.Y.; So, K.F.; Chan, H.H.L. Lycium Barbarum Polysaccharides Rescue Neurodegeneration in an Acute Ocular Hypertension Rat Model under Pre- and Posttreatment Conditions. Investig. Ophthalmol. Vis. Sci.; 2019; 60, pp. 2023-2033. [DOI: https://dx.doi.org/10.1167/iovs.19-26752] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31067322]
316. Lakshmanan, Y.; Wong, F.S.Y.; Zuo, B.; So, K.F.; Bui, B.V.; Chan, H.H.L. Posttreatment Intervention With Lycium Barbarum Polysaccharides Is Neuroprotective in a Rat Model of Chronic Ocular Hypertension. Investig. Ophthalmol. Vis. Sci.; 2019; 60, pp. 4606-4618. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31756254][DOI: https://dx.doi.org/10.1167/iovs.19-27886]
317. Chan, H.H.-l.; Lam, H.-i.; Choi, K.-y.; Li, S.Z.-c.; Lakshmanan, Y.; Yu, W.-y.; Chang, R.C.-c.; Lai, J.S.-m.; So, K.-f. Delay of Cone Degeneration in Retinitis Pigmentosa Using a 12-Month Treatment with Lycium Barbarum Supplement. J. Ethnopharmacol.; 2019; 236, pp. 336-344. [DOI: https://dx.doi.org/10.1016/j.jep.2019.03.023]
318. Li, X.; Holt, R.R.; Keen, C.L.; Morse, L.S.; Yiu, G.; Hackman, R.M.; Brown, L.L. Goji Berry Intake Increases Macular Pigment Optical Density in Healthy Adults: A Randomized Pilot Trial. Nutrients; 2021; 13, 4409. [DOI: https://dx.doi.org/10.3390/nu13124409]
319. Komeima, K.; Rogers, B.S.; Lu, L.; Campochiaro, P.A. Antioxidants Reduce Cone Cell Death in a Model of Retinitis Pigmentosa. Proc. Natl. Acad. Sci. USA; 2006; 103, pp. 11300-11305. [DOI: https://dx.doi.org/10.1073/pnas.0604056103]
320. Komeima, K.; Rogers, B.S.; Campochiaro, P.A. Antioxidants Slow Photoreceptor Cell Death in Mouse Models of Retinitis Pigmentosa. J. Cell. Physiol.; 2007; 213, pp. 809-815. [DOI: https://dx.doi.org/10.1002/jcp.21152]
321. Ramírez-Lamelas, D.T.; Benlloch-Navarro, S.; López-Pedrajas, R.; Gimeno-Hernández, R.; Olivar, T.; Silvestre, D.; Miranda, M. Lipoic Acid and Progesterone Alone or in Combination Ameliorate Retinal Degeneration in an Experimental Model of Hereditary Retinal Degeneration. Front. Pharmacol.; 2018; 9, 469. [DOI: https://dx.doi.org/10.3389/fphar.2018.00469]
322. Chen, Y.; Yang, M.; Wang, Z.J. (Z)-7,4′-Dimethoxy-6-Hydroxy-Aurone-4-O-β-Glucopyranoside Mitigates Retinal Degeneration in Rd10 Mouse Model through Inhibiting Oxidative Stress and Inflammatory Responses. Cutan. Ocul. Toxicol.; 2020; 39, pp. 36-42. [DOI: https://dx.doi.org/10.1080/15569527.2019.1685535]
323. Lin, B.; Youdim, M.B.H. The Protective, Rescue and Therapeutic Potential of Multi-Target Iron-Chelators for Retinitis Pigmentosa. Free Radic. Biol. Med.; 2021; 174, pp. 1-11. [DOI: https://dx.doi.org/10.1016/j.freeradbiomed.2021.07.031] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34324978]
324. Wang, K.; Peng, B.; Xiao, J.; Weinreb, O.; Youdim, M.B.H.; Lin, B. Iron-Chelating Drugs Enhance Cone Photoreceptor Survival in a Mouse Model of Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci.; 2017; 58, pp. 5287-5297. [DOI: https://dx.doi.org/10.1167/iovs.17-22096] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29049732]
325. Obolensky, A.; Berenshtein, E.; Lederman, M.; Bulvik, B.; Alper-Pinus, R.; Yaul, R.; Deleon, E.; Chowers, I.; Chevion, M.; Banin, E. Zinc-Desferrioxamine Attenuates Retinal Degeneration in the Rd10 Mouse Model of Retinitis Pigmentosa. Free Radic. Biol. Med.; 2011; 51, pp. 1482-1491. [DOI: https://dx.doi.org/10.1016/j.freeradbiomed.2011.07.014] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21824515]
326. Sakamoto, K.; Suzuki, T.; Takahashi, K.; Koguchi, T.; Hirayama, T.; Mori, A.; Nakahara, T.; Nagasawa, H.; Ishii, K. Iron-Chelating Agents Attenuate NMDA-Induced Neuronal Injury via Reduction of Oxidative Stress in the Rat Retina. Exp. Eye Res.; 2018; 171, pp. 30-36. [DOI: https://dx.doi.org/10.1016/j.exer.2018.03.008] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29530811]
327. Narayan, D.S.; Chidlow, G.; Wood, J.P.M.; Casson, R.J. Investigations Into Bioenergetic Neuroprotection of Cone Photoreceptors: Relevance to Retinitis Pigmentosa. Front. Neurosci.; 2019; 13, 1234. [DOI: https://dx.doi.org/10.3389/fnins.2019.01234] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31803010]
328. Heinänen, K.; Näntö-Salonen, K.; Komu, M.; Erkintalo, M.; Alanen, A.; Heinonen, O.J.; Pulkki, K.; Nikoskelainen, E.; Sipilä, I.; Simell, O. Creatine Corrects Muscle 31P Spectrum in Gyrate Atrophy with Hyperornithinaemia. Eur. J. Clin. Investig.; 1999; 29, pp. 1060-1065. [DOI: https://dx.doi.org/10.1046/j.1365-2362.1999.00569.x]
329. Sipilä, I.; Rapola, J.; Simell, O.; Vannas, A. Supplementary Creatine as a Treatment for Gyrate Atrophy of the Choroid and Retina. N. Engl. J. Med.; 1981; 304, pp. 867-870. [DOI: https://dx.doi.org/10.1056/NEJM198104093041503]
330. Kang, K.; Yu, M. Protective Effect of Sulforaphane against Retinal Degeneration in the Pde6 Rd10 Mouse Model of Retinitis Pigmentosa. Curr. Eye Res.; 2017; 42, pp. 1684-1688. [DOI: https://dx.doi.org/10.1080/02713683.2017.1358371]
331. Tanito, M.; Masutani, H.; Kim, Y.C.; Nishikawa, M.; Ohira, A.; Yodoi, J. Sulforaphane Induces Thioredoxin through the Antioxidant-Responsive Element and Attenuates Retinal Light Damage in Mice. Investig. Ophthalmol. Vis. Sci.; 2005; 46, pp. 979-987. [DOI: https://dx.doi.org/10.1167/iovs.04-1120]
332. Kong, L.; Liu, B.; Zhang, C.; Wang, B.; Wang, H.; Song, X.; Yang, Y.; Ren, X.; Yin, L.; Kong, H. et al. The Therapeutic Potential of Sulforaphane on Light-Induced Photoreceptor Degeneration through Antiapoptosis and Antioxidant Protection. Neurochem. Int.; 2016; 100, pp. 52-61. [DOI: https://dx.doi.org/10.1016/j.neuint.2016.08.011]
333. Kong, L.; Tanito, M.; Huang, Z.; Li, F.; Zhou, X.; Zaharia, A.; Yodoi, J.; McGinnis, J.F.; Cao, W. Delay of Photoreceptor Degeneration in Tubby Mouse by Sulforaphane. J. Neurochem.; 2007; 101, pp. 1041-1052. [DOI: https://dx.doi.org/10.1111/j.1471-4159.2007.04481.x] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17394579]
334. Li, S.; Yang, H.; Chen, X. Protective Effects of Sulforaphane on Diabetic Retinopathy: Activation of the Nrf2 Pathway and Inhibition of NLRP3 Inflammasome Formation. Exp. Anim.; 2019; 68, pp. 221-231. [DOI: https://dx.doi.org/10.1538/expanim.18-0146] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30606939]
335. Gong, Y.; Cao, X.; Gong, L.; Li, W. Sulforaphane Alleviates Retinal Ganglion Cell Death and Inflammation by Suppressing NLRP3 Inflammasome Activation in a Rat Model of Retinal Ischemia/Reperfusion Injury. Int. J. Immunopathol. Pharmacol.; 2019; 33, 2058738419861777. [DOI: https://dx.doi.org/10.1177/2058738419861777] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31266422]
336. Ambrecht, L.A.; Perlman, J.I.; McDonnell, J.F.; Zhai, Y.; Qiao, L.; Bu, P. Protection of Retinal Function by Sulforaphane Following Retinal Ischemic Injury. Exp. Eye Res.; 2015; 138, pp. 66-69. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26142954][DOI: https://dx.doi.org/10.1016/j.exer.2015.06.030]
337. Komeima, K.; Usui, S.; Shen, J.; Rogers, B.S.; Campochiaro, P.A. Blockade of Neuronal Nitric Oxide Synthase Reduces Cone Cell Death in a Model of Retinitis Pigmentosa. Free. Radic. Biol. Med.; 2008; 45, pp. 905-912. [DOI: https://dx.doi.org/10.1016/j.freeradbiomed.2008.06.020]
338. Vargas, A.; Yamamoto, K.L.; Craft, C.M.; Lee, E.J. Clusterin Enhances Cell Survival by Suppressing Neuronal Nitric-Oxide Synthase Expression in the Rhodopsin S334ter-Line3 Retinitis Pigmentosa Model. Brain Res.; 2021; 1768, 147575. [DOI: https://dx.doi.org/10.1016/j.brainres.2021.147575]
339. Goureau, O.; Claude Jeanny, J.; Becquet, F.; Paule Hartmann, M.; Courtois, Y. Protection against Light-Induced Retinal Degeneration by an Inhibitor of NO Synthase. Neuroreport; 1993; 5, pp. 233-236. [DOI: https://dx.doi.org/10.1097/00001756-199312000-00012]
340. Park, S.H.; Kim, J.H.; Kim, Y.H.; Park, C.K. Expression of Neuronal Nitric Oxide Synthase in the Retina of a Rat Model of Chronic Glaucoma. Vis. Res.; 2007; 47, pp. 2732-2740. [DOI: https://dx.doi.org/10.1016/j.visres.2007.07.011]
341. Neufeld, A.H.; Sawada, A.; Becker, B. Inhibition of Nitric-Oxide Synthase 2 by Aminoguanidine Provides Neuroprotection of Retinal Ganglion Cells in a Rat Model of Chronic Glaucoma. Proc. Natl. Acad. Sci. USA; 1999; 96, pp. 9944-9948. [DOI: https://dx.doi.org/10.1073/pnas.96.17.9944]
342. Koeberle, P.D.; Ball, A.K. Nitric Oxide Synthase Inhibition Delays Axonal Degeneration and Promotes the Survival of Axotomized Retinal Ganglion Cells. Exp. Neurol.; 1999; 158, pp. 366-381. [DOI: https://dx.doi.org/10.1006/exnr.1999.7113]
343. Wang, J.; Saul, A.; Smith, S.B. Activation of Sigma 1 Receptor Extends Survival of Cones and Improves Visual Acuity in a Murine Model of Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci.; 2019; 60, pp. 4397-4407. [DOI: https://dx.doi.org/10.1167/iovs.19-27709] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31639826]
344. Xiao, H.; Wang, J.; Saul, A.; Smith, S.B. Comparison of Neuroprotective Effects of Monomethylfumarate to the Sigma 1 Receptor Ligand (+)-Pentazocine in a Murine Model of Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci.; 2020; 61, 5. [DOI: https://dx.doi.org/10.1167/iovs.61.3.5] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32150247]
345. Wang, J.; Xiao, H.; Barwick, S.R.; Smith, S.B. Comparison of Sigma 1 Receptor Ligands SA4503 and PRE084 to (+)-Pentazocine in the Rd10 Mouse Model of RP. Investig. Ophthalmol. Vis. Sci.; 2020; 61, 3. [DOI: https://dx.doi.org/10.1167/iovs.61.13.3] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33137196]
346. Wang, J.; Xiao, H.; Barwick, S.; Liu, Y.; Smith, S.B. Optimal Timing for Activation of Sigma 1 Receptor in the Pde6b rd10/J (Rd10) Mouse Model of Retinitis Pigmentosa. Exp. Eye Res.; 2021; 202, 108397. [DOI: https://dx.doi.org/10.1016/j.exer.2020.108397] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33310057]
347. Wang, J.; Saul, A.; Roon, P.; Smith, S.B. Activation of the Molecular Chaperone, Sigma 1 Receptor, Preserves Cone Function in a Murine Model of Inherited Retinal Degeneration. Proc. Natl. Acad. Sci. USA; 2016; 113, pp. E3764-E3772. [DOI: https://dx.doi.org/10.1073/pnas.1521749113] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27298364]
348. Zhao, J.; Mysona, B.A.; Qureshi, A.; Kim, L.; Fields, T.; Gonsalvez, G.B.; Smith, S.B.; Bollinger, K.E. (+)-Pentazocine Reduces NMDA-Induced Murine Retinal Ganglion Cell Death Through a ΣR1-Dependent Mechanism. Investig. Ophthalmol. Vis. Sci.; 2016; 57, pp. 453-461. [DOI: https://dx.doi.org/10.1167/iovs.15-18565] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26868747]
349. Smith, S.B.; Duplantier, J.; Dun, Y.; Mysona, B.; Roon, P.; Martin, P.M.; Ganapathy, V. In Vivo Protection against Retinal Neurodegeneration by Sigma Receptor 1 Ligand (+)-Pentazocine. Investig. Ophthalmol. Vis. Sci.; 2008; 49, pp. 4154-4161. [DOI: https://dx.doi.org/10.1167/iovs.08-1824]
350. Wang, J.; Cui, X.; Roon, P.; Smith, S.B. Role of Sigma 1 Receptor in Retinal Degeneration of the Ins2Akita/+ Murine Model of Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci.; 2016; 57, pp. 2770-2781. [DOI: https://dx.doi.org/10.1167/iovs.15-18995]
351. Li, L.; He, S.; Liu, Y.; Yorio, T.; Ellis, D.Z. Sigma-1R Protects Retinal Ganglion Cells in Optic Nerve Crush Model for Glaucoma. Investig. Ophthalmol. Vis. Sci.; 2021; 62, 17. [DOI: https://dx.doi.org/10.1167/iovs.62.10.17]
352. Fontaine, V.; Monteiro, E.; Brazhnikova, E.; Lesage, L.; Balducci, C.; Guibout, L.; Feraille, L.; Elena, P.P.; Sahel, J.A.; Veillet, S. et al. Norbixin Protects Retinal Pigmented Epithelium Cells and Photoreceptors against A2E-Mediated Phototoxicity In Vitro and In Vivo. PLoS ONE; 2016; 11, e0167793. [DOI: https://dx.doi.org/10.1371/journal.pone.0167793]
353. Fontaine, V.; Monteiro, E.; Fournié, M.; Brazhnikova, E.; Boumedine, T.; Vidal, C.; Balducci, C.; Guibout, L.; Latil, M.; Dilda, P.J. et al. Systemic Administration of the Di-Apocarotenoid Norbixin (BIO201) Is Neuroprotective, Preserves Photoreceptor Function and Inhibits A2E and Lipofuscin Accumulation in Animal Models of Age-Related Macular Degeneration and Stargardt Disease. Aging; 2020; 12, pp. 6151-6171. [DOI: https://dx.doi.org/10.18632/aging.103014] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32255762]
354. Hu, S.L.; Zheng, C.P. (3R)-5,6,7-Trihydroxy-3-Isopropyl-3-Methylisochroman-1-One Ameliorates Retinal Degeneration in Pde6b Rd10 Mice. Cutan. Ocul. Toxicol.; 2018; 37, pp. 245-251. [DOI: https://dx.doi.org/10.1080/15569527.2018.1441863] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29480079]
355. Liu, L.; Jiang, Y.; Steinle, J.J. Glycyrrhizin Protects IGFBP-3 Knockout Mice from Retinal Damage. Cytokine; 2020; 125, 154856. [DOI: https://dx.doi.org/10.1016/j.cyto.2019.154856] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31526985]
356. Kim, G.H.; Paik, S.-S.; Park, Y.S.; Kim, H.G.; Kim, I.-B. Amelioration of Mouse Retinal Degeneration After Blue LED Exposure by Glycyrrhizic Acid-Mediated Inhibition of Inflammation. Front. Cell. Neurosci.; 2019; 13, 319. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31379505][DOI: https://dx.doi.org/10.3389/fncel.2019.00319]
357. Abu El-Asrar, A.M.; Nawaz, M.I.; Siddiquei, M.M.; Al-Kharashi, A.S.; Kangave, D.; Mohammad, G. High-Mobility Group Box-1 Induces Decreased Brain-Derived Neurotrophic Factor-Mediated Neuroprotection in the Diabetic Retina. Mediat. Inflamm.; 2013; 2013, 863036. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23766563][DOI: https://dx.doi.org/10.1155/2013/863036]
358. Mohammad, G.; Siddiquei, M.M.; Othman, A.; Al-Shabrawey, M.; Abu El-Asrar, A.M. High-Mobility Group Box-1 Protein Activates Inflammatory Signaling Pathway Components and Disrupts Retinal Vascular-Barrier in the Diabetic Retina. Exp. Eye Res.; 2013; 107, pp. 101-109. [DOI: https://dx.doi.org/10.1016/j.exer.2012.12.009]
359. Chi, W.; Chen, H.; Li, F.; Zhu, Y.; Yin, W.; Zhuo, Y. HMGB1 Promotes the Activation of NLRP3 and Caspase-8 Inflammasomes via NF-κB Pathway in Acute Glaucoma. J. Neuroinflamm.; 2015; 12, 137. [DOI: https://dx.doi.org/10.1186/s12974-015-0360-2]
360. Liu, L.; Jiang, Y.; Steinle, J.J. Inhibition of HMGB1 Protects the Retina from Ischemia-Reperfusion, as Well as Reduces Insulin Resistance Proteins. PLoS ONE; 2017; 12, e0178236. [DOI: https://dx.doi.org/10.1371/journal.pone.0178236]
361. Fernández-Sánchez, L.; Lax, P.; Pinilla, I.; Martín-Nieto, J.; Cuenca, N. Tauroursodeoxycholic Acid Prevents Retinal Degeneration in Transgenic P23H Rats. Investig. Ophthalmol. Vis. Sci.; 2011; 52, pp. 4998-5008. [DOI: https://dx.doi.org/10.1167/iovs.11-7496]
362. Tao, Y.; Dong, X.; Lu, X.; Qu, Y.; Wang, C.; Peng, G.; Zhang, J. Subcutaneous Delivery of Tauroursodeoxycholic Acid Rescues the Cone Photoreceptors in Degenerative Retina: A Promising Therapeutic Molecule for Retinopathy. Biomed. Pharmacother.; 2019; 117, 109021. [DOI: https://dx.doi.org/10.1016/j.biopha.2019.109021]
363. Zhang, T.; Baehr, W.; Fu, Y. Chemical Chaperone TUDCA Preserves Cone Photoreceptors in a Mouse Model of Leber Congenital Amaurosis. Investig. Ophthalmol. Vis. Sci.; 2012; 53, pp. 3349-3356. [DOI: https://dx.doi.org/10.1167/iovs.12-9851] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22531707]
364. Lawson, E.C.; Bhatia, S.K.; Han, M.K.; Aung, M.H.; Ciavatta, V.; Boatright, J.H.; Pardue, M.T. Tauroursodeoxycholic Acid Protects Retinal Function and Structure in Rd1 Mice. Adv. Exp. Med. Biol.; 2016; 854, pp. 431-436. [DOI: https://dx.doi.org/10.1007/978-3-319-17121-0_57] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26427442]
365. Phillips, M.J.; Walker, T.A.; Choi, H.-Y.; Faulkner, A.E.; Kim, M.K.; Sidney, S.S.; Boyd, A.P.; Nickerson, J.M.; Boatright, J.H.; Pardue, M.T. Tauroursodeoxycholic Acid Preservation of Photoreceptor Structure and Function in the Rd10 Mouse through Postnatal Day 30. Investig. Ophthalmol. Vis. Sci.; 2008; 49, pp. 2148-2155. [DOI: https://dx.doi.org/10.1167/iovs.07-1012] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18436848]
366. Drack, A.V.; Dumitrescu, A.V.; Bhattarai, S.; Gratie, D.; Stone, E.M.; Mullins, R.; Sheffield, V.C. TUDCA Slows Retinal Degeneration in Two Different Mouse Models of Retinitis Pigmentosa and Prevents Obesity in Bardet-Biedl Syndrome Type 1 Mice. Investig. Ophthalmol. Vis. Sci.; 2012; 53, pp. 100-106. [DOI: https://dx.doi.org/10.1167/iovs.11-8544] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22110077]
367. Oveson, B.C.; Iwase, T.; Hackett, S.F.; Lee, S.Y.; Usui, S.; Sedlak, T.W.; Snyder, S.H.; Campochiaro, P.A.; Sung, J.U. Constituents of Bile, Bilirubin and TUDCA, Protect against Oxidative Stress-Induced Retinal Degeneration. J. Neurochem.; 2011; 116, pp. 144-153. [DOI: https://dx.doi.org/10.1111/j.1471-4159.2010.07092.x] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21054389]
368. Zhang, X.; Shahani, U.; Reilly, J.; Shu, X. Disease Mechanisms and Neuroprotection by Tauroursodeoxycholic Acid in Rpgr Knockout Mice. J. Cell. Physiol.; 2019; 234, pp. 18801-18812. [DOI: https://dx.doi.org/10.1002/jcp.28519]
369. Gómez-Vicente, V.; Lax, P.; Fernández-Sánchez, L.; Rondón, N.; Esquiva, G.; Germain, F.; de la Villa, P.; Cuenca, N. Neuroprotective Effect of Tauroursodeoxycholic Acid on N-Methyl-D-Aspartate-Induced Retinal Ganglion Cell Degeneration. PLoS ONE; 2015; 10, e0137826. [DOI: https://dx.doi.org/10.1371/journal.pone.0137826]
370. Woo, S.J.; Kim, J.H.; Yu, H.G. Ursodeoxycholic Acid and Tauroursodeoxycholic Acid Suppress Choroidal Neovascularization in a Laser-Treated Rat Model. J. Ocul. Pharmacol. Ther.; 2010; 26, pp. 223-229. [DOI: https://dx.doi.org/10.1089/jop.2010.0012]
371. Fu, J.; Aung, M.H.; Prunty, M.C.; Hanif, A.M.; Hutson, L.M.; Boatright, J.H.; Pardue, M.T. Tauroursodeoxycholic Acid Protects Retinal and Visual Function in a Mouse Model of Type 1 Diabetes. Pharmaceutics; 2021; 13, 1154. [DOI: https://dx.doi.org/10.3390/pharmaceutics13081154]
372. Daruich, A.; Jaworski, T.; Henry, H.; Zola, M.; Youale, J.; Parenti, L.; Naud, M.C.; Delaunay, K.; Bertrand, M.; Berdugo, M. et al. Oral Ursodeoxycholic Acid Crosses the Blood Retinal Barrier in Patients with Retinal Detachment and Protects Against Retinal Degeneration in an Ex Vivo Model. Neurotherapeutics; 2021; 18, pp. 1325-1338. [DOI: https://dx.doi.org/10.1007/s13311-021-01009-6]
373. Mantopoulos, D.; Murakami, Y.; Comander, J.; Thanos, A.; Roh, M.; Miller, J.W.; Vavvas, D.G. Tauroursodeoxycholic Acid (TUDCA) Protects Photoreceptors from Cell Death after Experimental Retinal Detachment. PLoS ONE; 2011; 6, e24245. [DOI: https://dx.doi.org/10.1371/journal.pone.0024245] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21961034]
374. Kitamura, Y.; Bikbova, G.; Baba, T.; Yamamoto, S.; Oshitari, T. In Vivo Effects of Single or Combined Topical Neuroprotective and Regenerative Agents on Degeneration of Retinal Ganglion Cells in Rat Optic Nerve Crush Model. Sci. Rep.; 2019; 9, 101. [DOI: https://dx.doi.org/10.1038/s41598-018-36473-2] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30643179]
375. Garcia-Delgado, A.B.; Valdés-Sánchez, L.; Calado, S.M.; Diaz-Corrales, F.J.; Bhattacharya, S.S. Rasagiline Delays Retinal Degeneration in a Mouse Model of Retinitis Pigmentosa via Modulation of Bax/Bcl-2 Expression. CNS Neurosci. Ther.; 2018; 24, pp. 448-455. [DOI: https://dx.doi.org/10.1111/cns.12805] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29372592]
376. Eigeldinger-Berthou, S.; Meier, C.; Zulliger, R.; Lecaudé, S.; Enzmann, V.; Sarra, G.M. Rasagiline Interferes with Neurodegeneration in the Prph2/Rds Mouse. Retina; 2012; 32, pp. 617-628. [DOI: https://dx.doi.org/10.1097/IAE.0b013e31821e2070] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21878836]
377. Levkovitch-Verbin, H.; Vander, S.; Melamed, S. Rasagiline-Induced Delay of Retinal Ganglion Cell Death in Experimental Glaucoma in Rats. J. Glaucoma; 2011; 20, pp. 273-277. [DOI: https://dx.doi.org/10.1097/IJG.0b013e3181e3d101]
378. Lei, D.; Shao, Z.; Zhou, X.; Yuan, H. Synergistic Neuroprotective Effect of Rasagiline and Idebenone against Retinal Ischemia-Reperfusion Injury via the Lin28-Let-7-Dicer Pathway. Oncotarget; 2018; 9, pp. 12137-12153. [DOI: https://dx.doi.org/10.18632/oncotarget.24343]
379. Yu, S.; Framme, C.; Menke, M.N.; Berger, L.E.; Zinkernagel, M.S.; Munk, M.R.; Wolf, S.; Ebneter, A. Neuroprotection with Rasagiline in Patients with Macula-off Retinal Detachment: A Randomized Controlled Pilot Study. Sci. Rep.; 2020; 10, 4948. [DOI: https://dx.doi.org/10.1038/s41598-020-61835-0]
380. Benlloch-Navarro, S.; Trachsel-Moncho, L.; Fernández-Carbonell, Á.; Olivar, T.; Soria, J.M.; Almansa, I.; Miranda, M. Progesterone Anti-Inflammatory Properties in Hereditary Retinal Degeneration. J. Steroid Biochem. Mol. Biol.; 2019; 189, pp. 291-301. [DOI: https://dx.doi.org/10.1016/j.jsbmb.2019.01.007]
381. Lopez, A.M.R.; Roche, S.L.; Jackson, A.C.W.; Moloney, J.N.; Byrne, A.M.; Cotter, T.G. Pro-Survival Redox Signalling in Progesterone-Mediated Retinal Neuroprotection. Eur. J. Neurosci.; 2017; 46, pp. 1663-1672. [DOI: https://dx.doi.org/10.1111/ejn.13604]
382. Doonan, F.; O’Driscoll, C.; Kenna, P.; Cotter, T.G. Enhancing Survival of Photoreceptor Cells in Vivo Using the Synthetic Progestin Norgestrel. J. Neurochem.; 2011; 118, pp. 915-927. [DOI: https://dx.doi.org/10.1111/j.1471-4159.2011.07354.x]
383. Sánchez-Vallejo, V.; Benlloch-Navarro, S.; López-Pedrajas, R.; Romero, F.J.; Miranda, M. Neuroprotective Actions of Progesterone in an In Vivo Model of Retinitis Pigmentosa. Pharmacol. Res.; 2015; 99, pp. 276-288. [DOI: https://dx.doi.org/10.1016/j.phrs.2015.06.019] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26158501]
384. Roche, S.L.; Wyse-Jackson, A.C.; Gómez-Vicente, V.; Lax, P.; Ruiz-Lopez, A.M.; Byrne, A.M.; Cuenca, N.; Cotter, T.G. Progesterone Attenuates Microglial-Driven Retinal Degeneration and Stimulates Protective Fractalkine-CX3CR1 Signaling. PLoS ONE; 2016; 11, e0165197. [DOI: https://dx.doi.org/10.1371/journal.pone.0165197] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27814376]
385. Byrne, A.M.; Ruiz-Lopez, A.M.; Roche, S.L.; Moloney, J.N.; Wyse-Jackson, A.C.; Cotter, T.G. The Synthetic Progestin Norgestrel Modulates Nrf2 Signaling and Acts as an Antioxidant in a Model of Retinal Degeneration. Redox Biol.; 2016; 10, pp. 128-139. [DOI: https://dx.doi.org/10.1016/j.redox.2016.10.002] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27744118]
386. Allen, R.S.; Olsen, T.W.; Sayeed, I.; Cale, H.A.; Morrison, K.C.; Oumarbaeva, Y.; Lucaciu, I.; Boatright, J.H.; Pardue, M.T.; Stein, D.G. Progesterone Treatment in Two Rat Models of Ocular Ischemia. Investig. Ophthalmol. Vis. Sci.; 2015; 56, pp. 2880-2891. [DOI: https://dx.doi.org/10.1167/iovs.14-16070]
387. Hernández-Rabaza, V.; López-Pedrajas, R.; Almansa, I. Progesterone, Lipoic Acid, and Sulforaphane as Promising Antioxidants for Retinal Diseases: A Review. Antioxidants; 2019; 8, 53. [DOI: https://dx.doi.org/10.3390/antiox8030053]
388. Corrochano, S.; Barhoum, R.; Boya, P.; Arroba, A.I.; Rodríguez-Muela, N.; Gómez-Vicente, V.; Bosch, F.; De Pablo, F.; De La Villa, P.; De La Rosa, E.J. Attenuation of Vision Loss and Delay in Apoptosis of Photoreceptors Induced by Proinsulin in a Mouse Model of Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci.; 2008; 49, pp. 4188-4194. [DOI: https://dx.doi.org/10.1167/iovs.08-2182]
389. Fernández-Sánchez, L.; Lax, P.; Isiegas, C.; Ayuso, E.; Ruiz, J.M.; De La Villa, P.; Bosch, F.; De La Rosa, E.J.; Cuenca, N. Proinsulin Slows Retinal Degeneration and Vision Loss in the P23H Rat Model of Retinitis Pigmentosa. Hum. Gene Ther.; 2012; 23, pp. 1290-1300. [DOI: https://dx.doi.org/10.1089/hum.2012.067]
390. Amato, R.; Canovai, A.; Melecchi, A.; Pezzino, S.; Corsaro, R.; Dal Monte, M.; Rusciano, D.; Bagnoli, P.; Cammalleri, M. Dietary Supplementation of Antioxidant Compounds Prevents Light-Induced Retinal Damage in a Rat Model. Biomedicines; 2021; 9, 1177. [DOI: https://dx.doi.org/10.3390/biomedicines9091177]
391. Wang, Y.; Qi, W.; Huo, Y.; Song, G.; Sun, H.; Guo, X.; Wang, C. Cyanidin-3-Glucoside Attenuates 4-Hydroxynonenal- and Visible Light-Induced Retinal Damage in Vitro and in Vivo. Food Funct.; 2019; 10, pp. 2871-2880. [DOI: https://dx.doi.org/10.1039/C9FO00273A]
392. Lee, S.H.; Jeong, E.; Paik, S.S.; Jeon, J.H.; Jung, S.W.; Kim, H.B.; Kim, M.; Chun, M.H.; Kim, I.B. Cyanidin-3-Glucoside Extracted from Mulberry Fruit Can Reduce N-Methyl-N-Nitrosourea-Induced Retinal Degeneration in Rats. Curr. Eye Res.; 2014; 39, pp. 79-87. [DOI: https://dx.doi.org/10.3109/02713683.2013.825275]
393. Ercan, Z.; Haberal, N.; Helvacioglu, F.; Daǧdeviren, A.; Yilmaz, G. Effect of Intravitreal and Intraperitoneal Cyanidin-3-Glucoside Injection in Oxygen-Induced Retinopathy Mouse Model. Indian J. Ophthalmol.; 2019; 67, pp. 801-805. [DOI: https://dx.doi.org/10.4103/ijo.IJO_166_18] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31124490]
394. Osada, H.; Okamoto, T.; Kawashima, H.; Toda, E.; Miyake, S.; Nagai, N.; Kobayashi, S.; Tsubota, K.; Ozawa, Y. Neuroprotective Effect of Bilberry Extract in a Murine Model of Photo-Stressed Retina. PLoS ONE; 2017; 12, e0178627. [DOI: https://dx.doi.org/10.1371/journal.pone.0178627] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28570634]
395. Wang, Y.; Zhao, L.; Lu, F.; Yang, X.; Deng, Q.; Ji, B.; Huang, F.; Kitts, D.D. Retinoprotective Effects of Bilberry Anthocyanins via Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Mechanisms in a Visible Light-Induced Retinal Degeneration Model in Pigmented Rabbits. Molecules; 2015; 20, pp. 22395-22410. [DOI: https://dx.doi.org/10.3390/molecules201219785] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26694327]
396. Fursova, A.Z.; Gesarevich, O.G.; Gonchar, A.M.; Trofimova, N.A.; Kolosova, N.G. Dietary supplementation with bilberry extract prevents macular degeneration and cataracts in senesce-accelerated OXYS rats. Adv. Gerontol.; 2005; 16, pp. 76-79.
397. Kim, J.; Kim, C.S.; Lee, Y.M.; Sohn, E.; Jo, K.; Kim, J.S. Vaccinium Myrtillus Extract Prevents or Delays the Onset of Diabetes--Induced Blood-Retinal Barrier Breakdown. Int. J. Food Sci. Nutr.; 2015; 66, pp. 236-242. [DOI: https://dx.doi.org/10.3109/09637486.2014.979319]
398. Matsunaga, N.; Chikaraishi, Y.; Shimazawa, M.; Yokota, S.; Hara, H. Vaccinium Myrtillus (Bilberry) Extracts Reduce Angiogenesis In Vitro and In Vivo. Evid. Based Complement. Altern. Med.; 2010; 7, pp. 47-56. [DOI: https://dx.doi.org/10.1093/ecam/nem151]
399. Nakamura, O.; Moritoh, S.; Sato, K.; Maekawa, S.; Murayama, N.; Himori, N.; Omodaka, K.; Sogon, T.; Nakazawa, T. Bilberry Extract Administration Prevents Retinal Ganglion Cell Death in Mice via the Regulation of Chaperone Molecules under Conditions of Endoplasmic Reticulum Stress. Clin. Ophthalmol.; 2017; 11, pp. 1825-1834. [DOI: https://dx.doi.org/10.2147/OPTH.S145159]
400. Miyake, S.; Takahashi, N.; Sasaki, M.; Kobayashi, S.; Tsubota, K.; Ozawa, Y. Vision Preservation during Retinal Inflammation by Anthocyanin-Rich Bilberry Extract: Cellular and Molecular Mechanism. Lab. Investig.; 2012; 92, pp. 102-109. [DOI: https://dx.doi.org/10.1038/labinvest.2011.132]
401. Kalt, W.; McDonald, J.E.; Fillmore, S.A.E.; Tremblay, F. Blueberry Effects on Dark Vision and Recovery after Photobleaching: Placebo-Controlled Crossover Studies. J. Agric. Food Chem.; 2014; 62, pp. 11180-11189. [DOI: https://dx.doi.org/10.1021/jf503689c]
402. Guzmán Mendoza, N.A.; Homma, K.; Osada, H.; Toda, E.; Ban, N.; Nagai, N.; Negishi, K.; Tsubota, K.; Ozawa, Y. Neuroprotective Effect of 4-Phenylbutyric Acid against Photo-Stress in the Retina. Antioxidants; 2021; 10, 1147. [DOI: https://dx.doi.org/10.3390/antiox10071147]
403. Qiu, Y.; Yao, J.; Jia, L.; Thompson, D.A.; Zacks, D.N. Shifting the Balance of Autophagy and Proteasome Activation Reduces Proteotoxic Cell Death: A Novel Therapeutic Approach for Restoring Photoreceptor Homeostasis. Cell Death Dis.; 2019; 10, 547. [DOI: https://dx.doi.org/10.1038/s41419-019-1780-1] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31320609]
404. Li, S.; Samardzija, M.; Yang, Z.; Grimm, C.; Jin, M. Pharmacological Amelioration of Cone Survival and Vision in a Mouse Model for Leber Congenital Amaurosis. J. Neurosci.; 2016; 36, pp. 5808-5819. [DOI: https://dx.doi.org/10.1523/JNEUROSCI.3857-15.2016] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27225770]
405. Mesentier-Louro, L.A.; Shariati, M.A.; Dalal, R.; Camargo, A.; Kumar, V.; Shamskhou, E.A.; de Jesus Perez, V.; Liao, Y.J. Systemic Hypoxia Led to Little Retinal Neuronal Loss and Dramatic Optic Nerve Glial Response. Exp. Eye Res.; 2020; 193, 107957. [DOI: https://dx.doi.org/10.1016/j.exer.2020.107957] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32032627]
406. Kumar, V.; Mesentier-Louro, L.A.; Oh, A.J.; Heng, K.; Shariati, M.A.; Huang, H.; Hu, Y.; Liao, Y.J. Increased ER Stress After Experimental Ischemic Optic Neuropathy and Improved RGC and Oligodendrocyte Survival After Treatment With Chemical Chaperon. Investig. Ophthalmol. Vis. Sci.; 2019; 60, pp. 1953-1966. [DOI: https://dx.doi.org/10.1167/iovs.18-24890] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31060051]
407. Jeng, Y.Y.; Lin, N.T.; Chang, P.H.; Huang, Y.P.; Pang, V.F.; Liu, C.H.; Lin, C.T. Retinal Ischemic Injury Rescued by Sodium 4-Phenylbutyrate in a Rat Model. Exp. Eye Res.; 2007; 84, pp. 486-492. [DOI: https://dx.doi.org/10.1016/j.exer.2006.11.001]
408. Bian, M.; Du, X.; Cui, J.; Wang, P.; Wang, W.; Zhu, W.; Zhang, T.; Chen, Y. Celastrol Protects Mouse Retinas from Bright Light-Induced Degeneration through Inhibition of Oxidative Stress and Inflammation. J. Neuroinflamm.; 2016; 13, 50. [DOI: https://dx.doi.org/10.1186/s12974-016-0516-8]
409. Gu, L.; Kwong, J.M.K.; Yadegari, D.; Yu, F.; Caprioli, J.; Piri, N. The Effect of Celastrol on the Ocular Hypertension-Induced Degeneration of Retinal Ganglion Cells. Neurosci. Lett.; 2018; 670, pp. 89-93. [DOI: https://dx.doi.org/10.1016/j.neulet.2018.01.043]
410. Kyung, H.; Kwong, J.M.K.; Bekerman, V.; Gu, L.; Yadegari, D.; Caprioli, J.; Piri, N. Celastrol Supports Survival of Retinal Ganglion Cells Injured by Optic Nerve Crush. Brain Res.; 2015; 1609, pp. 21-30. [DOI: https://dx.doi.org/10.1016/j.brainres.2015.03.032]
411. Chen, Y.W.; Huang, Y.P.; Wu, P.C.; Chiang, W.Y.; Wang, P.H.; Chen, B.Y. The Functional Vision Protection Effect of Danshensu via Dopamine D1 Receptors: In Vivo Study. Nutrients; 2021; 13, 978. [DOI: https://dx.doi.org/10.3390/nu13030978]
412. Perusek, L.; Maeda, A.; Maeda, T. Supplementation with Vitamin a Derivatives to Rescue Vision in Animal Models of Degenerative Retinal Diseases. Methods Mol. Biol.; 2015; 1271, pp. 345-362. [DOI: https://dx.doi.org/10.1007/978-1-4939-2330-4_22]
413. Li, T.; Sandberg, M.A.; Pawlyk, B.S.; Rosner, B.; Hayes, K.C.; Dryja, T.P.; Berson, E.L. Effect of Vitamin A Supplementation on Rhodopsin Mutants Threonine-17 --> Methionine and Proline-347 --> Serine in Transgenic Mice and in Cell Cultures. Proc. Natl. Acad. Sci. USA; 1998; 95, pp. 11933-11938. [DOI: https://dx.doi.org/10.1073/pnas.95.20.11933] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9751768]
414. El-Mansi, A.A.; Al-Kahtani, M.A.; Rady, A.M.; El-Bealy, E.A.; Al-Asmari, A.M. Vitamin A and Daucus Carota Root Extract Mitigate STZ-Induced Diabetic Retinal Degeneration in Wistar Albino Rats by Modulating Neurotransmission and Downregulation of Apoptotic Pathways. J. Food Biochem.; 2021; 45, e13688. [DOI: https://dx.doi.org/10.1111/jfbc.13688] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33687088]
415. Nishimura, C.; Kuriyama, K. Alteration of Lipid Peroxide and Endogenous Antioxidant Contents in Retina of Streptozotocin-Induced Diabetic Rats: Effect of Vitamin A Administration. Jpn. J. Pharmacol.; 1985; 37, pp. 365-372. [DOI: https://dx.doi.org/10.1254/jjp.37.365] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/4010088]
416. Tiruvalluru, M.; Ananthathmakula, P.; Ayyalasomayajula, V.; Nappanveettil, G.; Ayyagari, R.; Reddy, G.B. Vitamin A Supplementation Ameliorates Obesity-Associated Retinal Degeneration in WNIN/Ob Rats. Nutrition; 2013; 29, pp. 298-304. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23036575][DOI: https://dx.doi.org/10.1016/j.nut.2012.06.006]
417. Sezen, O.; Ertekin, M.V.; Demircan, B.; Karslioǧlu, I.; Erdoǧan, F.; Koçer, I.; Çalik, I.; Gepdiremen, A. Vitamin E and L-Carnitine, Separately or in Combination, in the Prevention of Radiation-Induced Brain and Retinal Damages. Neurosurg. Rev.; 2008; 31, pp. 205-213. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18259790][DOI: https://dx.doi.org/10.1007/s10143-007-0118-0]
418. Yilmaz, T.; Aydemir, O.; Özercan, I.H.; Üstündaǧ, B. Effects of Vitamin e, Pentoxifylline and Aprotinin on Light-Induced Retinal Injury. Ophthalmologica; 2007; 221, pp. 159-166. [DOI: https://dx.doi.org/10.1159/000099295]
419. Ueda, K.; Zhao, J.; Kim, H.J.; Sparrow, J.R. Photodegradation of Retinal Bisretinoids in Mouse Models and Implications for Macular Degeneration. Proc. Natl. Acad. Sci. USA; 2016; 113, pp. 6904-6909. [DOI: https://dx.doi.org/10.1073/pnas.1524774113]
420. Di Leo, M.A.S.; Ghirlanda, G.; Silveri, N.G.; Giardina, B.; Franconi, F.; Santini, S.A. Potential Therapeutic Effect of Antioxidants in Experimental Diabetic Retina: A Comparison between Chronic Taurine and Vitamin E plus Selenium Supplementations. Free Radic. Res.; 2003; 37, pp. 323-330. [DOI: https://dx.doi.org/10.1080/1071576021000055271]
421. Fernandez-Robredo, P.; Moya, D.; Rodriguez, J.A.; Garcia-Layana, A. Vitamins C and e Reduce Retinal Oxidative Stress and Nitric Oxide Metabolites and Prevent Ultrastructural Alterations in Porcine Hypercholesterolemia. Investig. Ophthalmol. Vis. Sci.; 2005; 46, pp. 1140-1146. [DOI: https://dx.doi.org/10.1167/iovs.04-0516]
422. Schwartz, S.G.; Wang, X.; Chavis, P.; Kuriyan, A.E.; Abariga, S.A. Vitamin A and Fish Oils for Preventing the Progression of Retinitis Pigmentosa. Cochrane Database Syst. Rev.; 2020; 6, CD008428. [DOI: https://dx.doi.org/10.1002/14651858.CD008428.PUB3]
423. Jacobson, S.G.; Cideciyan, A.V.; Regunath, G.; Rodriguez, F.J.; Vandenburgh, K.; Sheffield, V.C.; Stone, E.M. Night Blindness in Sorsby’s Fundus Dystrophy Reversed by Vitamin A. Nat. Genet.; 1995; 11, pp. 27-32. [DOI: https://dx.doi.org/10.1038/ng0995-27] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/7550309]
424. Evans, J.R.; Lawrenson, J.G. Antioxidant Vitamin and Mineral Supplements for Slowing the Progression of Age-Related Macular Degeneration. Cochrane Database Syst. Rev.; 2012; 11, CD000254. [DOI: https://dx.doi.org/10.1002/14651858.CD000254.pub4] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23152201]
425. Berson, E.L. A Randomized Trial of Vitamin A and Vitamin E Supplementation for Retinitis Pigmentosa. Arch. Ophthalmol.; 1993; 111, pp. 761-772. [DOI: https://dx.doi.org/10.1001/archopht.1993.01090060049022] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8512476]
426. Domanico, D.; Fragiotta, S.; Cutini, A.; Carnevale, C.; Zompatori, L.; Vingolo, E. Circulating Levels of Reactive Oxygen Species in Patients with Nonproliferative Diabetic Retinopathy and the Influence of Antioxidant Supplementation: 6-Month Follow-Up. Indian J. Ophthalmol.; 2015; 63, pp. 9-14. [DOI: https://dx.doi.org/10.4103/0301-4738.151455] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25686055]
427. Piccardi, M.; Fadda, A.; Martelli, F.; Marangoni, D.; Magli, A.; Minnella, A.M.; Bertelli, M.; Di Marco, S.; Bisti, S.; Falsini, B. Antioxidant Saffron and Central Retinal Function in ABCA4-Related Stargardt Macular Dystrophy. Nutrients; 2019; 11, 2461. [DOI: https://dx.doi.org/10.3390/nu11102461] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31618812]
428. Cukras, C.A.; Singaravelu, J.; Alvarez, J.; Wong, W.T. Pilot Study to Evaluate Oral Minocycline as a Treatment for Cystoid Macular Edema Associated with Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci.; 2017; 58, 3261.
429. Bahrami, H.; Melia, M.; Dagnelie, G. Lutein Supplementation in Retinitis Pigmentosa: PC-Based Vision Assessment in a Randomized Double-Masked Placebo-Controlled Clinical Trial [NCT00029289]. BMC Ophthalmol; 2006; 6, 23. [DOI: https://dx.doi.org/10.1186/1471-2415-6-23]
430. Berson, E.L.; Rosner, B.; Sandberg, M.A.; Weigel-DiFranco, C.; Brockhurst, R.J.; Hayes, K.C.; Johnson, E.J.; Anderson, E.J.; Johnson, C.A.; Gaudio, A.R. et al. Clinical Trial of Lutein in Patients with Retinitis Pigmentosa Receiving Vitamin A. Arch. Ophthalmol.; 2010; 128, pp. 403-411. [DOI: https://dx.doi.org/10.1001/archophthalmol.2010.32]
431. Vidović, B.B.; Milinčić, D.D.; Marčetić, M.D.; Djuriš, J.D.; Ilić, T.D.; Kostić, A.Ž.; Pešić, M.B. Health Benefits and Applications of Goji Berries in Functional Food Products Development: A Review. Antioxidants; 2022; 11, 248. [DOI: https://dx.doi.org/10.3390/antiox11020248]
432. Scholl, H.P.N.; Moore, A.T.; Koenekoop, R.K.; Wen, Y.; Fishman, G.A.; van den Born, L.I.; Bittner, A.; Bowles, K.; Fletcher, E.C.; Collison, F.T. et al. Safety and Proof-of-Concept Study of Oral QLT091001 in Retinitis Pigmentosa Due to Inherited Deficiencies of Retinal Pigment Epithelial 65 Protein (RPE65) or Lecithin: Retinol Acyltransferase (LRAT). PLoS ONE; 2015; 10, e0143846. [DOI: https://dx.doi.org/10.1371/journal.pone.0143846]
433. Wen, Y.; Birch, D.G. Outer Segment Thickness Predicts Visual Field Response to QLT091001 in Patients with RPE65 or LRAT Mutations. Transl. Vis. Sci. Technol.; 2015; 4, 8. [DOI: https://dx.doi.org/10.1167/tvst.4.5.8] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26448901]
434. Koenekoop, R.K.; Sui, R.; Sallum, J.; van den Born, L.I.; Ajlan, R.; Khan, A.; den Hollander, A.I.; Cremers, F.P.M.; Mendola, J.D.; Bittner, A.K. et al. Oral 9-Cis Retinoid for Childhood Blindness Due to Leber Congenital Amaurosis Caused by RPE65 or LRAT Mutations: An Open-Label Phase 1b Trial. Lancet; 2014; 384, pp. 1513-1520. [DOI: https://dx.doi.org/10.1016/S0140-6736(14)60153-7]
435. Scholl, H.P.; Koenekoop, R.K.; Moore, A.T.; Zrenner, E.; van den Born, L.I.; Fishman, G.A.; Dagnelie, G.; Schuchard, R.A.; Saperstein, D.A.; Mallick, S. et al. Vision Improvement After Retreatment with an Oral Synthetic Cis-Retinoid (QLT091001) in Subjects with LCA or RP Due to Mutations in RPE65 or LRAT. Investig. Ophthalmol. Vis. Sci.; 2015; 56, 1285.
436. Hoffman, D.R.; Hughbanks-Wheaton, D.K.; Pearson, N.S.; Fish, G.E.; Spencer, R.; Takacs, A.; Klein, M.; Locke, K.G.; Birch, D.G. Four-Year Placebo-Controlled Trial of Docosahexaenoic Acid in X-Linked Retinitis Pigmentosa (DHAX Trial): A Randomized Clinical Trial. JAMA Ophthalmol.; 2014; 132, pp. 866-873. [DOI: https://dx.doi.org/10.1001/jamaophthalmol.2014.1634] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24805262]
437. Hughbanks-Wheaton, D.K.; Birch, D.G.; Fish, G.E.; Spencer, R.; Shirlene Pearson, N.; Takacs, A.; Hoffman, D.R. Safety Assessment of Docosahexaenoic Acid in X-Linked Retinitis Pigmentosa: The 4-Year DHAX Trial. Investig. Ophthalmol. Vis. Sci.; 2014; 55, pp. 4958-4966. [DOI: https://dx.doi.org/10.1167/iovs.14-14437]
438. Hoffman, D.R.; Hughbanks-Wheaton, D.K.; Spencer, R.; Fish, G.E.; Pearson, N.S.; Wang, Y.Z.; Klein, M.; Takacs, A.; Locke, K.G.; Birch, D.G. Docosahexaenoic Acid Slows Visual Field Progression in X-Linked Retinitis Pigmentosa: Ancillary Outcomes of the DHAX Trial. Investig. Ophthalmol. Vis. Sci.; 2015; 56, pp. 6646-6653. [DOI: https://dx.doi.org/10.1167/iovs.15-17786]
439. Berson, E.L.; Rosner, B.; Sandberg, M.A.; Weigel-DiFranco, C.; Moser, A.; Brockhurst, R.J.; Hayes, K.C.; Johnson, C.A.; Anderson, E.J.; Gaudio, A.R. et al. Clinical Trial of Docosahexaenoic Acid in Patients with Retinitis Pigmentosa Receiving Vitamin A Treatment. Arch. Ophthalmol.; 2004; 122, pp. 1297-1305. [DOI: https://dx.doi.org/10.1001/archopht.122.9.1297]
440. Berson, E.L. Further Evaluation of Docosahexaenoic Acid in Patients With Retinitis Pigmentosa Receiving Vitamin A Treatment. Arch. Ophthalmol.; 2004; 122, pp. 1306-1314. [DOI: https://dx.doi.org/10.1001/archopht.122.9.1306]
441. MacDonald, I.M.; Sieving, P.A. Investigation of the Effect of Dietary Docosahexaenoic Acid (DHA) Supplementation on Macular Function in Subjects with Autosomal Recessive Stargardt Macular Dystrophy. Ophthalmic Genet.; 2018; 39, pp. 477-486. [DOI: https://dx.doi.org/10.1080/13816810.2018.1484931]
442. Jurgensmeier, C.; Bhosale, P.; Bernstein, P.S. Evaluation of 4-Methylpyrazole as a Potential Therapeutic Dark Adaptation Inhibitor. Curr. Eye Res.; 2007; 32, pp. 911-915. [DOI: https://dx.doi.org/10.1080/02713680701616156]
443. Birch, D.G.; Bernstein, P.S.; Iannacone, A.; Pennesi, M.E.; Lam, B.L.; Heckenlively, J.; Csaky, K.; Hartnett, M.E.; Winthrop, K.L.; Jayasundera, T. et al. Effect of Oral Valproic Acid vs Placebo for Vision Loss in Patients With Autosomal Dominant Retinitis Pigmentosa. JAMA Ophthalmol.; 2018; 136, pp. 849-856. [DOI: https://dx.doi.org/10.1001/jamaophthalmol.2018.1171] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29879277]
444. Rotenstreich, Y.; Belkin, M.; Sadetzki, S.; Chetrit, A.; Ferman-Attar, G.; Sher, I.; Harari, A.; Shaish, A.; Harats, D. Treatment With 9- Cis β-Carotene–Rich Powder in Patients With Retinitis Pigmentosa. JAMA Ophthalmol.; 2013; 131, pp. 985-992. [DOI: https://dx.doi.org/10.1001/jamaophthalmol.2013.147] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23700011]
445. Lee, S.Y.; Usui, S.; Zafar, A.B.; Oveson, B.C.; Jo, Y.J.; Lu, L.; Masoudi, S.; Campochiaro, P.A. N-Acetylcysteine Promotes Long-Term Survival of Cones in a Model of Retinitis Pigmentosa. J. Cell. Physiol.; 2011; 226, pp. 1843-1849. [DOI: https://dx.doi.org/10.1002/jcp.22508] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21506115]
446. Schwalfenberg, G.K. N-Acetylcysteine: A Review of Clinical Usefulness (an Old Drug with New Tricks). J. Nutr. Metab.; 2021; 2021, 9949453. [DOI: https://dx.doi.org/10.1155/2021/9949453]
447. Sunitha, K.; Hemshekhar, M.; Thushara, R.M.; Santhosh, M.S.; Yariswamy, M.; Kemparaju, K.; Girish, K.S. N-Acetylcysteine Amide: A Derivative to Fulfill the Promises of N-Acetylcysteine. Free Radic. Res.; 2013; 47, pp. 357-367. [DOI: https://dx.doi.org/10.3109/10715762.2013.781595]
448. Grinberg, L.; Fibach, E.; Amer, J.; Atlas, D. N-Acetylcysteine Amide, a Novel Cell-Permeating Thiol, Restores Cellular Glutathione and Protects Human Red Blood Cells from Oxidative Stress. Free Radic. Biol. Med.; 2005; 38, pp. 136-145. [DOI: https://dx.doi.org/10.1016/j.freeradbiomed.2004.09.025]
449. Holmgren, A. Antioxidant Function of Thioredoxin and Glutaredoxin Systems. Antioxid. Redox Signal.; 2000; 2, pp. 811-820. [DOI: https://dx.doi.org/10.1089/ars.2000.2.4-811]
450. Nakamura, H.; Herzenberg, L.A.; Bai, J.; Araya, S.; Kondo, N.; Nishinaka, Y.; Herzenberg, L.A.; Yodoi, J. Circulating Thioredoxin Suppresses Lipopolysaccharide-Induced Neutrophil Chemotaxis. Proc. Natl. Acad. Sci. USA; 2001; 98, pp. 15143-15148. [DOI: https://dx.doi.org/10.1073/pnas.191498798]
451. Nakamura, H.; Hoshino, Y.; Okuyama, H.; Matsuo, Y.; Yodoi, J. Thioredoxin 1 Delivery as New Therapeutics. Adv. Drug Deliv. Rev.; 2009; 61, pp. 303-309. [DOI: https://dx.doi.org/10.1016/j.addr.2009.01.003]
452. Léveillard, T.; Mohand-Saïd, S.; Lorentz, O.; Hicks, D.; Fintz, A.C.; Clérin, E.; Simonutti, M.; Forster, V.; Cavusoglu, N.; Chalmel, F. et al. Identification and Characterization of Rod-Derived Cone Viability Factor. Nat. Genet.; 2004; 36, pp. 755-759. [DOI: https://dx.doi.org/10.1038/ng1386]
453. Léveillard, T.; Sahel, J.A. Rod-Derived Cone Viability Factor for Treating Blinding Diseases: From Clinic to Redox Signaling. Sci. Transl. Med.; 2010; 2, 26ps16. [DOI: https://dx.doi.org/10.1126/scitranslmed.3000866] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20375363]
454. Chalmel, F.; Léveillard, T.; Jaillard, C.; Lardenois, A.; Berdugo, N.; Morel, E.; Koehl, P.; Lambrou, G.; Holmgren, A.; Sahel, J.A. et al. Rod-Derived Cone Viability Factor-2 Is a Novel Bifunctional-Thioredoxin-like Protein with Therapeutic Potential. BMC Mol. Biol.; 2007; 8, 74. [DOI: https://dx.doi.org/10.1186/1471-2199-8-74] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17764561]
455. Clérin, E.; Marussig, M.; Sahel, J.A.; Léveillard, T. Metabolic and Redox Signaling of the Nucleoredoxin-Like-1 Gene for the Treatment of Genetic Retinal Diseases. Int. J. Mol. Sci.; 2020; 21, 1625. [DOI: https://dx.doi.org/10.3390/ijms21051625] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32120883]
456. Cronin, T.; Raffelsberger, W.; Lee-Rivera, I.; Jaillard, C.; Niepon, M.L.; Kinzel, B.; Clérin, E.; Petrosian, A.; Picaud, S.; Poch, O. et al. The Disruption of the Rod-Derived Cone Viability Gene Leads to Photoreceptor Dysfunction and Susceptibility to Oxidative Stress. Cell Death Differ.; 2010; 17, pp. 1199-1210. [DOI: https://dx.doi.org/10.1038/cdd.2010.2] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20139892]
457. Stone, J.; Mitrofanis, J.; Johnstone, D.M.; Falsini, B.; Bisti, S.; Adam, P.; Nuevo, A.B.; George-Weinstein, M.; Mason, R.; Eells, J. Acquired Resilience: An Evolved System of Tissue Protection in Mammals. Dose Response; 2018; 16, 1559325818803428. [DOI: https://dx.doi.org/10.1177/1559325818803428]
458. Yamauchi, M.; Tsuruma, K.; Imai, S.; Nakanishi, T.; Umigai, N.; Shimazawa, M.; Hara, H. Crocetin Prevents Retinal Degeneration Induced by Oxidative and Endoplasmic Reticulum Stresses via Inhibition of Caspase Activity. Eur. J. Pharmacol.; 2011; 650, pp. 110-119. [DOI: https://dx.doi.org/10.1016/j.ejphar.2010.09.081]
459. Laabich, A.; Vissvesvaran, G.P.; Lieu, K.L.; Murata, K.; McGinn, T.E.; Manmoto, C.C.; Sinclair, J.R.; Karliga, I.; Leung, D.W.; Fawzi, A. et al. Protective Effect of Crocin against Blue Light- and White Light-Mediated Photoreceptor Cell Death in Bovine and Primate Retinal Primary Cell Culture. Investig. Ophthalmol. Vis. Sci.; 2006; 47, pp. 3156-3163. [DOI: https://dx.doi.org/10.1167/iovs.05-1621]
460. Giaccio, M. Crocetin from Saffron: An Active Component of an Ancient Spice. Crit. Rev. Food Sci. Nutr.; 2004; 44, pp. 155-172. [DOI: https://dx.doi.org/10.1080/10408690490441433]
461. Kanakis, C.D.; Tarantilis, P.A.; Tajmir-Riahi, H.A.; Polissiou, M.G. DNA Interaction with Saffron’s Secondary Metabolites Safranal, Crocetin, and Dimethylcrocetin. DNA Cell Biol.; 2007; 26, pp. 63-70. [DOI: https://dx.doi.org/10.1089/dna.2006.0529]
462. Garrido-Mesa, N.; Zarzuelo, A.; Gálvez, J. Minocycline: Far beyond an Antibiotic. Br. J. Pharmacol.; 2013; 169, pp. 337-352. [DOI: https://dx.doi.org/10.1111/bph.12139]
463. Ataie-Kachoie, P.; Badar, S.; Morris, D.L.; Pourgholami, M.H. Minocycline Targets the NF-κB Nexus through Suppression of TGF-Β1-TAK1-IκB Signaling in Ovarian Cancer. Mol. Cancer Res.; 2013; 11, pp. 1279-1291. [DOI: https://dx.doi.org/10.1158/1541-7786.MCR-13-0239] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23858099]
464. Blum, D.; Chtarto, A.; Tenenbaum, L.; Brotchi, J.; Levivier, M. Clinical Potential of Minocycline for Neurodegenerative Disorders. Neurobiol. Dis.; 2004; 17, pp. 359-366. [DOI: https://dx.doi.org/10.1016/j.nbd.2004.07.012] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15571972]
465. Romero-Miguel, D.; Lamanna-Rama, N.; Casquero-Veiga, M.; Gómez-Rangel, V.; Desco, M.; Soto-Montenegro, M.L. Minocycline in Neurodegenerative and Psychiatric Diseases: An Update. Eur. J. Neurol.; 2021; 28, pp. 1056-1081. [DOI: https://dx.doi.org/10.1111/ene.14642] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33180965]
466. Nazarian, S.; Akhondi, H. Minocycline. StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022; [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32119406]
467. Acuña-Castroviejo, D.; Escames, G.; Venegas, C.; Díaz-Casado, M.E.; Lima-Cabello, E.; López, L.C.; Rosales-Corral, S.; Tan, D.X.; Reiter, R.J. Extrapineal Melatonin: Sources, Regulation, and Potential Functions. Cell. Mol. Life Sci.; 2014; 71, pp. 2997-3025. [DOI: https://dx.doi.org/10.1007/s00018-014-1579-2]
468. Meng, X.; Li, Y.; Li, S.; Zhou, Y.; Gan, R.Y.; Xu, D.P.; Li, H. Bin Dietary Sources and Bioactivities of Melatonin. Nutrients; 2017; 9, 367. [DOI: https://dx.doi.org/10.3390/nu9040367]
469. Reiter, R.J.; Coto-Montes, A.; Boga, J.A.; Fuentes-Broto, L.; Rosales-Corral, S.; Tan, D.X. Melatonin: New Applications in Clinical and Veterinary Medicine, Plant Physiology and Industry. Neuro Endocrinol. Lett.; 2011; 32, pp. 575-587.
470. Tordjman, S.; Chokron, S.; Delorme, R.; Charrier, A.; Bellissant, E.; Jaafari, N.; Fougerou, C. Melatonin: Pharmacology, Functions and Therapeutic Benefits. Curr. Neuropharmacol.; 2017; 15, pp. 434-443. [DOI: https://dx.doi.org/10.2174/1570159X14666161228122115]
471. Dehdashtian, E.; Mehrzadi, S.; Yousefi, B.; Hosseinzadeh, A.; Reiter, R.J.; Safa, M.; Ghaznavi, H.; Naseripour, M. Diabetic Retinopathy Pathogenesis and the Ameliorating Effects of Melatonin; Involvement of Autophagy, Inflammation and Oxidative Stress. Life Sci.; 2018; 193, pp. 20-33. [DOI: https://dx.doi.org/10.1016/j.lfs.2017.12.001]
472. Peddada, K.V.; Brown, A.; Verma, V.; Nebbioso, M. Therapeutic Potential of Curcumin in Major Retinal Pathologies. Int. Ophthalmol.; 2019; 39, pp. 725-734. [DOI: https://dx.doi.org/10.1007/s10792-018-0845-y]
473. Chandrasekaran, P.R.; Madanagopalan, V.G. Role of Curcumin in Retinal Diseases-A Review. Graefe’s Arch. Clin. Exp. Ophthalmol.; 2022; 260, pp. 1457-1473. [DOI: https://dx.doi.org/10.1007/s00417-021-05542-0]
474. Lou, J.; Hu, W.; Tian, R.; Zhang, H.; Jia, Y.; Zhang, J.; Zhang, L. Optimization and Evaluation of a Thermoresponsive Ophthalmic in Situ Gel Containing Curcumin-Loaded Albumin Nanoparticles. Int. J. Nanomed.; 2014; 9, pp. 2517-2525. [DOI: https://dx.doi.org/10.2147/IJN.S60270]
475. Duan, Y.; Cai, X.; Du, H.; Zhai, G. Novel in Situ Gel Systems Based on P123/TPGS Mixed Micelles and Gellan Gum for Ophthalmic Delivery of Curcumin. Colloids Surf. B Biointerfaces; 2015; 128, pp. 322-330. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25707750][DOI: https://dx.doi.org/10.1016/j.colsurfb.2015.02.007]
476. Howell, J.C.; Chun, E.; Farrell, A.N.; Hur, E.Y.; Caroti, C.M.; Iuvone, P.M.; Haque, R. Global MicroRNA Expression Profiling: Curcumin (Diferuloylmethane) Alters Oxidative Stress-Responsive MicroRNAs in Human ARPE-19 Cells. Mol. Vis.; 2013; 19, pp. 544-560. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23559849]
477. Landrum, J.T.; Bone, R.A. Lutein, Zeaxanthin, and the Macular Pigment. Arch. Biochem. Biophys.; 2001; 385, pp. 28-40. [DOI: https://dx.doi.org/10.1006/abbi.2000.2171] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11361022]
478. Bone, R.A.; Landrum, J.T.; Friedes, L.M.; Gomez, C.M.; Kilburn, M.D.; Menendez, E.; Vidal, I.; Wang, W. Distribution of Lutein and Zeaxanthin Stereoisomers in the Human Retina. Exp. Eye Res.; 1997; 64, pp. 211-218. [DOI: https://dx.doi.org/10.1006/exer.1996.0210] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9176055]
479. Mewborn, C.M.; Lindbergh, C.A.; Robinson, T.L.; Gogniat, M.A.; Terry, D.P.; Jean, K.R.; Hammond, B.R.; Renzi-Hammond, L.M.; Miller, L.S. Lutein and Zeaxanthin Are Positively Associated with Visual-Spatial Functioning in Older Adults: An FMRI Study. Nutrients; 2018; 10, 458. [DOI: https://dx.doi.org/10.3390/nu10040458]
480. Kijlstra, A.; Tian, Y.; Kelly, E.R.; Berendschot, T.T.J.M. Lutein: More than Just a Filter for Blue Light. Prog. Retin. Eye Res.; 2012; 31, pp. 303-315. [DOI: https://dx.doi.org/10.1016/j.preteyeres.2012.03.002] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22465791]
481. Chew, E.Y.; Clemons, T.E.; SanGiovanni, J.P.; Danis, R.P.; Ferris, F.L.; Elman, M.J.; Antoszyk, A.N.; Ruby, A.J.; Orth, D.; Bressler, S.B. et al. Secondary Analyses of the Effects of Lutein/Zeaxanthin on Age-Related Macular Degeneration Progression: AREDS2 Report No. 3. JAMA Ophthalmol.; 2014; 132, pp. 142-149. [DOI: https://dx.doi.org/10.1001/jamaophthalmol.2013.7376]
482. Chakrawarti, L.; Agrawal, R.; Dang, S.; Gupta, S.; Gabrani, R. Therapeutic Effects of EGCG: A Patent Review. Expert Opin Pat.; 2016; 26, pp. 907-916. [DOI: https://dx.doi.org/10.1080/13543776.2016.1203419]
483. He, J.; Xu, L.; Yang, L.; Wang, X. Epigallocatechin Gallate Is the Most Effective Catechin Against Antioxidant Stress via Hydrogen Peroxide and Radical Scavenging Activity. Med. Sci. Monit.; 2018; 24, pp. 8198-8206. [DOI: https://dx.doi.org/10.12659/MSM.911175]
484. Chu, K.O.; Chan, K.P.; Yang, Y.P.; Qin, Y.J.; Li, W.Y.; Chan, S.O.; Wang, C.C.; Pang, C.P. Effects of EGCG Content in Green Tea Extract on Pharmacokinetics, Oxidative Status and Expression of Inflammatory and Apoptotic Genes in the Rat Ocular Tissues. J. Nutr. Biochem.; 2015; 26, pp. 1357-1367. [DOI: https://dx.doi.org/10.1016/j.jnutbio.2015.07.001] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26362107]
485. Lee, J.H.; Song, D.K.; Jung, C.H.; Shin, D.H.; Park, J.W.; Taeg, K.K.; Jang, B.C.; Mun, K.C.; Kim, S.P.; Suh, S.I. et al. (−)-Epigallocatechin Gallate Attenuates Glutamate-Induced Cytotoxicity via Intracellular Ca Modulation in PC12 Cells. Clin. Exp. Pharmacol. Physiol.; 2004; 31, pp. 530-536. [DOI: https://dx.doi.org/10.1111/j.1440-1681.2004.04044.x] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15298546]
486. Chou, C.W.; Huang, W.J.; Tien, L.T.; Wang, S.J. (−)-Epigallocatechin Gallate, the Most Active Polyphenolic Catechin in Green Tea, Presynaptically Facilitates Ca2+-Dependent Glutamate Release via Activation of Protein Kinase C in Rat Cerebral Cortex. Synapse; 2007; 61, pp. 889-902. [DOI: https://dx.doi.org/10.1002/syn.20444] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17663453]
487. Yu, J.; Jia, Y.; Guo, Y.; Chang, G.; Duan, W.; Sun, M.; Li, B.; Li, C. Epigallocatechin-3-Gallate Protects Motor Neurons and Regulates Glutamate Level. FEBS Lett.; 2010; 584, pp. 2921-2925. [DOI: https://dx.doi.org/10.1016/j.febslet.2010.05.011] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20488180]
488. Tang, G.Y.; Meng, X.; Gan, R.Y.; Zhao, C.N.; Liu, Q.; Feng, Y.B.; Li, S.; Wei, X.L.; Atanasov, A.G.; Corke, H. et al. Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review. Int. J. Mol. Sci.; 2019; 20, 6196. [DOI: https://dx.doi.org/10.3390/ijms20246196] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31817990]
489. Neelam, K.; Dey, S.; Sim, R.; Lee, J.; Au Eong, K.G. Fructus Lycii: A Natural Dietary Supplement for Amelioration of Retinal Diseases. Nutrients; 2021; 13, 246. [DOI: https://dx.doi.org/10.3390/nu13010246]
490. Liu, F.; Liu, X.; Zhou, Y.; Yu, Y.; Wang, K.; Zhou, Z.; Gao, H.; So, K.F.; Vardi, N.; Xu, Y. Wolfberry-Derived Zeaxanthin Dipalmitate Delays Retinal Degeneration in a Mouse Model of Retinitis Pigmentosa through Modulating STAT3, CCL2 and MAPK Pathways. J. Neurochem.; 2021; 158, pp. 1131-1150. [DOI: https://dx.doi.org/10.1111/jnc.15472]
491. Wu, Y.Z.; Qiao, F.; Xu, G.W.; Zhao, J.; Teng, J.F.; Li, C.; Deng, W.J. Neuroprotective Metabolites from the Endophytic Fungus Penicillium Citrinum of the Mangrove Bruguiera Gymnorrhiza. Phytochem. Lett.; 2015; 12, pp. 148-152. [DOI: https://dx.doi.org/10.1016/j.phytol.2015.03.007]
492. Wu, D.M.; Ji, X.; Ivanchenko, M.V.; Chung, M.; Piper, M.; Rana, P.; Wang, S.K.; Xue, Y.; West, E.; Zhao, S.R. et al. Nrf2 Overexpression Rescues the RPE in Mouse Models of Retinitis Pigmentosa. JCI Insightig.; 2021; 6, e145029. [DOI: https://dx.doi.org/10.1172/jci.insight.145029]
493. Xiong, W.; Garfinkel, A.E.M.C.; Li, Y.; Benowitz, L.I.; Cepko, C.L. NRF2 Promotes Neuronal Survival in Neurodegeneration and Acute Nerve Damage. J. Clin. Investig.; 2015; 125, pp. 1433-1445. [DOI: https://dx.doi.org/10.1172/JCI79735]
494. Sahu, B.; Leon, L.M.; Zhang, W.; Puranik, N.; Periasamy, R.; Khanna, H.; Volkert, M. Oxidative Stress Resistance 1 Gene Therapy Retards Neurodegeneration in the Rd1 Mutant Mouse Model of Retinopathy. Investig. Ophthalmol. Vis. Sci.; 2021; 62, 8. [DOI: https://dx.doi.org/10.1167/iovs.62.12.8] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34505865]
495. Volkert, M.R.; Crowley, D.J. Preventing Neurodegeneration by Controlling Oxidative Stress: The Role of OXR1. Front. Neurosci.; 2020; 14, 611904. [DOI: https://dx.doi.org/10.3389/fnins.2020.611904] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33384581]
496. Jiang, K.; Mondal, A.K.; Adlakha, Y.K.; Gumerson, J.; Aponte, A.; Gieser, L.; Kim, J.-W.; Boleda, A.; Brooks, M.J.; Nellissery, J. et al. Multiomics Analyses Reveal Early Metabolic Imbalance and Mitochondrial Stress in Neonatal Photoreceptors Leading to Cell Death in Pde6brd1/Rd1 Mouse Model of Retinal Degeneration. Hum. Mol. Genet.; 2022; ddac013. [DOI: https://dx.doi.org/10.1093/hmg/ddac013] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35075486]
497. Punzo, C.; Xiong, W.; Cepko, C.L. Loss of Daylight Vision in Retinal Degeneration: Are Oxidative Stress and Metabolic Dysregulation to Blame?. J. Biol. Chem.; 2012; 287, pp. 1642-1648. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22074929][DOI: https://dx.doi.org/10.1074/jbc.R111.304428]
498. Yu, D.-Y.; Cringle, S.; Valter, K.; Walsh, N.; Lee, D.; Stone, J. Photoreceptor Death, Trophic Factor Expression, Retinal Oxygen Status, and Photoreceptor Function in the P23H Rat. Investig. Opthalmol. Vis. Sci.; 2004; 45, pp. 2013-2019. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15161870][DOI: https://dx.doi.org/10.1167/iovs.03-0845]
499. Xue, Y.; Wang, S.K.; Rana, P.; West, E.R.; Hong, C.M.; Feng, H.; Wu, D.M.; Cepko, C.L. AAV-Txnip Prolongs Cone Survival and Vision in Mouse Models of Retinitis Pigmentosa. Elife; 2021; 10, e66240. [DOI: https://dx.doi.org/10.7554/eLife.66240]
500. Pagano, G.; Pallardó, F.V.; Lyakhovich, A.; Tiano, L.; Trifuoggi, M. Mitigating the Pro-Oxidant State and Melanogenesis of Retinitis Pigmentosa: By Counteracting Mitochondrial Dysfunction. Cell. Mol. Life Sci.; 2021; 78, pp. 7491-7503. [DOI: https://dx.doi.org/10.1007/s00018-021-04007-1]
501. Wallimann, T.; Tokarska-Schlattner, M.; Schlattner, U. The Creatine Kinase System and Pleiotropic Effects of Creatine. Amino Acids; 2011; 40, pp. 1271-1296. [DOI: https://dx.doi.org/10.1007/s00726-011-0877-3]
502. Rowe, A.A.; Patel, P.D.; Gordillo, R.; Wert, K.J. Replenishment of TCA Cycle Intermediates Provides Photoreceptor Resilience against Neurodegeneration during Progression of Retinitis Pigmentosa. JCI Insight; 2021; 6, e150898. [DOI: https://dx.doi.org/10.1172/jci.insight.150898]
503. Wert, K.J.; Velez, G.; Kanchustambham, V.L.; Shankar, V.; Evans, L.P.; Sengillo, J.D.; Zare, R.N.; Bassuk, A.G.; Tsang, S.H.; Mahajan, V.B. Metabolite Therapy Guided by Liquid Biopsy Proteomics Delays Retinal Neurodegeneration. EBioMedicine; 2020; 52, 102636. [DOI: https://dx.doi.org/10.1016/j.ebiom.2020.102636]
504. Boatright, J.H.; Moring, A.G.; McElroy, C.; Phillips, M.J.; Do, V.T.; Chang, B.; Hawes, N.L.; Boyd, A.P.; Sidney, S.S.; Stewart, R.E. et al. Tool from Ancient Pharmacopoeia Prevents Vision Loss. Mol. Vis.; 2006; 12, pp. 1706-1714. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17213800]
505. Daruich, A.; Picard, E.; Boatright, J.H.; Behar-Cohen, F. Review: The Bile Acids Urso- and Tauroursodeoxycholic Acid as Neuroprotective Therapies in Retinal Disease. Mol. Vis.; 2019; 25, pp. 610-624. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31700226]
506. Boatright, J.H.; Nickerson, J.M.; Moring, A.G.; Pardue, M.T. Bile Acids in Treatment of Ocular Disease. J. Ocul. Biol. Dis. Infor.; 2009; 2, pp. 149-159. [DOI: https://dx.doi.org/10.1007/s12177-009-9030-x] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20046852]
507. Fernández-Sánchez, L.; Bravo-Osuna, I.; Lax, P.; Arranz-Romera, A.; Maneu, V.; Esteban-Pérez, S.; Pinilla, I.; Puebla-González, M.D.M.; Herrero-Vanrell, R.; Cuenca, N. Controlled Delivery of Tauroursodeoxycholic Acid from Biodegradable Microspheres Slows Retinal Degeneration and Vision Loss in P23H Rats. PLoS ONE; 2017; 12, e0177998. [DOI: https://dx.doi.org/10.1371/journal.pone.0177998]
508. Fu, Y.; Zhang, T. Pathophysilogical Mechanism and Treatment Strategies for Leber Congenital Amaurosis. Adv. Exp. Med. Biol.; 2014; 801, pp. 791-796. [DOI: https://dx.doi.org/10.1007/978-1-4614-3209-8_99]
509. Gaspar, J.M.; Martins, A.; Cruz, R.; Rodrigues, C.M.P.; Ambrósio, A.F.; Santiago, A.R. Tauroursodeoxycholic Acid Protects Retinal Neural Cells from Cell Death Induced by Prolonged Exposure to Elevated Glucose. Neuroscience; 2013; 253, pp. 380-388. [DOI: https://dx.doi.org/10.1016/j.neuroscience.2013.08.053]
510. Fernández-Sánchez, L.; Esquiva, G.; Pinilla, I.; Lax, P.; Cuenca, N. Retinal Vascular Degeneration in the Transgenic P23H Rat Model of Retinitis Pigmentosa. Front. Neuroanat.; 2018; 12, 55. [DOI: https://dx.doi.org/10.3389/fnana.2018.00055]
511. Parry, G.J.; Rodrigues, C.M.P.; Aranha, M.M.; Hilbert, S.J.; Davey, C.; Kelkar, P.; Low, W.C.; Steer, C.J. Safety, Tolerability, and Cerebrospinal Fluid Penetration of Ursodeoxycholic Acid in Patients with Amyotrophic Lateral Sclerosis. Clin. Neuropharmacol.; 2010; 33, pp. 17-21. [DOI: https://dx.doi.org/10.1097/WNF.0b013e3181c47569]
512. Elia, A.E.; Lalli, S.; Monsurrò, M.R.; Sagnelli, A.; Taiello, A.C.; Reggiori, B.; La Bella, V.; Tedeschi, G.; Albanese, A. Tauroursodeoxycholic Acid in the Treatment of Patients with Amyotrophic Lateral Sclerosis. Eur. J. Neurol.; 2016; 23, pp. 45-52. [DOI: https://dx.doi.org/10.1111/ene.12664]
513. Min, J.H.; Hong, Y.H.; Sung, J.J.; Kim, S.M.; Lee, J.B.; Lee, K.W. Oral Solubilized Ursodeoxycholic Acid Therapy in Amyotrophic Lateral Sclerosis: A Randomized Cross-over Trial. J. Korean Med. Sci.; 2012; 27, pp. 200-206. [DOI: https://dx.doi.org/10.3346/jkms.2012.27.2.200]
514. Roche, S.L.; Ruiz-Lopez, A.M.; Moloney, J.N.; Byrne, A.M.; Cotter, T.G. Microglial-Induced Müller Cell Gliosis Is Attenuated by Progesterone in a Mouse Model of Retinitis Pigmentosa. Glia; 2018; 66, pp. 295-310. [DOI: https://dx.doi.org/10.1002/glia.23243] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29034506]
515. Djebaili, M.; Guo, Q.; Pettus, E.H.; Hoffman, S.W.; Stein, D.G. The Neurosteroids Progesterone and Allopregnanolone Reduce Cell Death, Gliosis, and Functional Deficits after Traumatic Brain Injury in Rats. J. Neurotrauma; 2005; 22, pp. 106-118. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15665606][DOI: https://dx.doi.org/10.1089/neu.2005.22.106]
516. Drew, P.D.; Chavis, J.A. Female Sex Steroids: Effects upon Microglial Cell Activation. J. Neuroimmunol.; 2000; 111, pp. 77-85. [DOI: https://dx.doi.org/10.1016/S0165-5728(00)00386-6]
517. Miller, L.; Hunt, J.S. Regulation of TNF-Alpha Production in Activated Mouse Macrophages by Progesterone. J. Immunol.; 1998; 160, pp. 5098-5104. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9590261]
518. Cutler, S.M.; Cekic, M.; Miller, D.M.; Wali, B.; VanLandingham, J.W.; Stein, D.G. Progesterone Improves Acute Recovery after Traumatic Brain Injury in the Aged Rat. J. Neurotrauma; 2007; 24, pp. 1475-1486. [DOI: https://dx.doi.org/10.1089/neu.2007.0294] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17892409]
519. Puia, G.; Belelli, D. Neurosteroids on Our Minds. Trends Pharm. Sci; 2001; 22, pp. 266-267. [DOI: https://dx.doi.org/10.1016/S0165-6147(00)01706-5]
520. Reddy, D.S.; O’Malley, B.W.; Rogawski, M.A. Anxiolytic Activity of Progesterone in Progesterone Receptor Knockout Mice. Neuropharmacology; 2005; 48, pp. 14-24. [DOI: https://dx.doi.org/10.1016/j.neuropharm.2004.09.002]
521. Fliesler, A.J.; Anderson, R.E. Chemistry and Metabolism of Lipids in the Vertebrate Retina. Prog. Lipid Res.; 1983; 22, pp. 79-131. [DOI: https://dx.doi.org/10.1016/0163-7827(83)90004-8]
522. Hoffman, D.R.; Locke, K.G.; Wheaton, D.H.; Fish, G.E.; Spencer, R.; Birch, D.G. A Randomized, Placebo-Controlled Clinical Trial of Docosahexaenoic Acid Supplementation for X-Linked Retinitis Pigmentosa. Am. J. Ophthalmol.; 2004; 137, pp. 704-718. [DOI: https://dx.doi.org/10.1016/j.ajo.2003.10.045]
523. Cremers, F.P.M.; Lee, W.; Collin, R.W.J.; Allikmets, R. Clinical Spectrum, Genetic Complexity and Therapeutic Approaches for Retinal Disease Caused by ABCA4 Mutations. Prog. Retin. Eye Res.; 2020; 79, 100861. [DOI: https://dx.doi.org/10.1016/j.preteyeres.2020.100861]
524. Issa, P.C.; Barnard, A.R.; Herrmann, P.; Washington, I.; MacLaren, R.E. Rescue of the Stargardt Phenotype in Abca4 Knockout Mice through Inhibition of Vitamin A Dimerization. Proc. Natl. Acad. Sci. USA; 2015; 112, pp. 8415-8420. [DOI: https://dx.doi.org/10.1073/pnas.1506960112] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26106163]
525. Blum, E.; Zhang, J.; Zaluski, J.; Einstein, D.E.; Korshin, E.E.; Kubas, A.; Gruzman, A.; Tochtrop, G.P.; Kiser, P.D.; Palczewski, K. Rational Alteration of Pharmacokinetics of Chiral Fluorinated and Deuterated Derivatives of Emixustat for Retinal Therapy. J. Med. Chem.; 2021; 64, pp. 8287-8302. [DOI: https://dx.doi.org/10.1021/acs.jmedchem.1c00279] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34081480]
526. Yeong, J.L.; Loveman, E.; Colquitt, J.L.; Royle, P.; Waugh, N.; Lois, N. Visual Cycle Modulators versus Placebo or Observation for the Prevention and Treatment of Geographic Atrophy Due to Age-Related Macular Degeneration. Cochrane Database Syst. Rev.; 2020; 12, CD013154. [DOI: https://dx.doi.org/10.1002/14651858.CD013154] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33331670]
527. Kubota, R.; Al-Fayoumi, S.; Mallikaarjun, S.; Patil, S.; Bavik, C.; Chandler, J.W. Phase 1, Dose-Ranging Study of Emixustat Hydrochloride (ACU-4429), a Novel Visual Cycle Modulator, in Healthy Volunteers. Retina; 2014; 34, pp. 603-609. [DOI: https://dx.doi.org/10.1097/01.iae.0000434565.80060.f8] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24056528]
528. Dugel, P.U.; Novack, R.L.; Csaky, K.G.; Richmond, P.P.; Birch, D.G.; Kubota, R. Phase Ii, Randomized, Placebo-Controlled, 90-Day Study of Emixustat Hydrochloride in Geographic Atrophy Associated with Dry Age-Related Macular Degeneration. Retina; 2015; 35, pp. 1173-1183. [DOI: https://dx.doi.org/10.1097/IAE.0000000000000606]
529. Rosenfeld, P.J.; Dugel, P.U.; Holz, F.G.; Heier, J.S.; Pearlman, J.A.; Novack, R.L.; Csaky, K.G.; Koester, J.M.; Gregory, J.K.; Kubota, R. Emixustat Hydrochloride for Geographic Atrophy Secondary to Age-Related Macular Degeneration: A Randomized Clinical Trial. Ophthalmology; 2018; 125, pp. 1556-1567. [DOI: https://dx.doi.org/10.1016/j.ophtha.2018.03.059]
530. Drolet, D.W.; Green, L.S.; Gold, L.; Janjic, N. Reviews Fit for the Eye: Aptamers in Ocular Disorders. Nucleic Acid Ther.; 2016; 26, pp. 127-146. [DOI: https://dx.doi.org/10.1089/nat.2015.0573]
531. Ricklin, D.; Lambris, J.D. Complement in Immune and Inflammatory Disorders: Therapeutic Interventions. J. Immunol.; 2013; 190, pp. 3839-3847. [DOI: https://dx.doi.org/10.4049/jimmunol.1203200]
532. Biesecker, G.; Dihel, L.; Enney, K.; Bendele, R.A. Derivation of RNA Aptamer Inhibitors of Human Complement C5. Immunopharmacology; 1999; 42, pp. 219-230. [DOI: https://dx.doi.org/10.1016/S0162-3109(99)00020-X]
533. Park, Y.G.; Park, Y.S.; Kim, I.B. Complement System and Potential Therapeutics in Age-Related Macular Degeneration. Int. J. Mol. Sci.; 2021; 22, 6851. [DOI: https://dx.doi.org/10.3390/ijms22136851]
534. Simon, W.A.; Herrmann, M.; Klein, T.; Shin, J.M.; Huber, R.; Senn-Bilfinger, J.; Postius, S. Soraprazan: Setting New Standards in Inhibition of Gastric Acid Secretion. J. Pharmacol. Exp. Ther.; 2007; 321, pp. 866-874. [DOI: https://dx.doi.org/10.1124/jpet.107.120428] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17369284]
535. Julien-Schraermeyer, S.; Illing, B.; Tschulakow, A.; Taubitz, T.; Guezguez, J.; Burnet, M.; Schraermeyer, U. Penetration, Distribution, and Elimination of Remofuscin/Soraprazan in Stargardt Mouse Eyes Following a Single Intravitreal Injection Using Pharmacokinetics and Transmission Electron Microscopic Autoradiography: Implication for the Local Treatment of Stargardt’s Disease and Dry Age-Related Macular Degeneration. Pharmacol. Res. Perspect.; 2020; 8, e00683. [DOI: https://dx.doi.org/10.1002/PRP2.683] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33164337]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Inherited retinal dystrophies (IRDs) are a large group of genetically and clinically heterogeneous diseases characterized by the progressive degeneration of the retina, ultimately leading to loss of visual function. Oxidative stress and inflammation play fundamental roles in the physiopathology of these diseases. Photoreceptor cell death induces an inflammatory state in the retina. The activation of several molecular pathways triggers different cellular responses to injury, including the activation of microglia to eliminate debris and recruit inflammatory cells from circulation. Therapeutical options for IRDs are currently limited, although a small number of patients have been successfully treated by gene therapy. Many other therapeutic strategies are being pursued to mitigate the deleterious effects of IRDs associated with oxidative metabolism and/or inflammation, including inhibiting reactive oxygen species’ accumulation and inflammatory responses, and blocking autophagy. Several compounds are being tested in clinical trials, generating great expectations for their implementation. The present review discusses the main death mechanisms that occur in IRDs and the latest therapies that are under investigation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details








1 Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; Department of Ophthalmology, Lozano Blesa, University Hospital, 50009 Zaragoza, Spain; Department of Surgery, University of Zaragoza, 50009 Zaragoza, Spain
2 Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
3 Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain;
4 Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
5 Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain;