Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Spinocerebellar ataxia type 3 (SCA3) is caused by the expansion of a glutamine repeat in the protein ataxin-3, which is deposited as intracellular aggregates in affected brain regions. Despite the controversial role of ataxin-3 amyloid structures in SCA3 pathology, the identification of molecules with the capacity to prevent aberrant self-assembly and stabilize functional conformation(s) of ataxin-3 is a key to the development of therapeutic solutions. Amyloid-specific kinetic assays are routinely used to measure rates of protein self-assembly in vitro and are employed during screening for fibrillation inhibitors. The high tendency of ataxin-3 to assemble into oligomeric structures implies that minor changes in experimental conditions can modify ataxin-3 amyloid assembly kinetics. Here, we determine the self-association rates of ataxin-3 and present a detailed study of the aggregation of normal and pathogenic ataxin-3, highlighting the experimental conditions that should be considered when implementing and validating ataxin-3 amyloid progress curves in different settings and in the presence of ataxin-3 interactors. This assay provides a unique and robust platform to screen for modulators of the first steps of ataxin-3 aggregation—a starting point for further studies with cell and animal models of SCA3.

Details

Title
A Robust Assay to Monitor Ataxin-3 Amyloid Fibril Assembly
Author
Figueiredo, Francisco 1   VIAFID ORCID Logo  ; Lopes-Marques, Mónica 2   VIAFID ORCID Logo  ; Almeida, Bruno 3   VIAFID ORCID Logo  ; Matscheko, Nena 4 ; Martins, Pedro M 5   VIAFID ORCID Logo  ; Silva, Alexandra 5   VIAFID ORCID Logo  ; Macedo-Ribeiro, Sandra 5   VIAFID ORCID Logo 

 Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; [email protected] (F.F.); [email protected] (M.L.-M.); [email protected] (P.M.M.); Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal 
 Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; [email protected] (F.F.); [email protected] (M.L.-M.); [email protected] (P.M.M.); Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal 
 Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; [email protected]; ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal 
 Dynamic Biosensors GmbH, 82152 Martinsried, Germany; [email protected] 
 Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; [email protected] (F.F.); [email protected] (M.L.-M.); [email protected] (P.M.M.); Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal 
First page
1969
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734409
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2679686863
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.