Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, based on the modified block-by-block method, we propose a higher-order numerical scheme for two-dimensional nonlinear fractional Volterra integral equations with uniform accuracy. This approach involves discretizing the domain into a large number of subdomains and using biquadratic Lagrangian interpolation on each subdomain. The convergence of the high-order numerical scheme is rigorously established. We prove that the numerical solution converges to the exact solution with the optimal convergence order O(hx4α+hy4β) for 0<α,β<1. Finally, experiments with four numerical examples are shown, to support the theoretical findings and to illustrate the efficiency of our proposed method.

Details

Title
A Higher-Order Numerical Scheme for Two-Dimensional Nonlinear Fractional Volterra Integral Equations with Uniform Accuracy
Author
Wang, Zi-Qiang; Liu, Qin; Jun-Ying, Cao
First page
314
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
25043110
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2679707434
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.