Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the north of China, during winter, a large number of activities (such as leisure, work, sightseeing and sports) are engaged in. This paper mainly focuses on human thermal perceptions of outdoor activities in a winter climate, especially the change in thermal perceptions when humans enter a temporary rest space with a shelter effect. A climate chamber was applied in our experiments, and temperature up-steps of 4, 8 and 12 °C were set, respectively. Twenty four college students were invited to engage in activities of different intensities, such as standing, walking (slowly) and biking. Through questionnaire survey and field measurement, the subjects’ thermal sensation, thermal comfort and skin temperature were obtained. Hypothesis testing and non-linear regression methods were introduced to analyze experiment data. Major results were as follows. After temperature up-step changes, thermal sensation and skin temperature reach steady state within 30 min. However, the change in skin temperature caused by a short-term thermal experience does not disappear completely within 40 min. In addition to the influence of ambient temperature changes, activity intensity also influenced the variation in thermal sensation (subjective) and skin temperature (objective). These study results provide a scientific reference for future research and design of a temporary rest space in low ambient temperatures. Experimental studies including broader age groups and outdoor field tests are valuable for future research.

Details

Title
Experimental Study on the Effect of Temperature Up-Step on Human Thermal Perception and Skin Temperature between Activity Intensities at Low Ambient Temperatures
Author
Luo, Peng 1 ; Liu, Yongxin 1   VIAFID ORCID Logo  ; Wang, Hao 1 

 School of Architecture, Harbin Institute of Technology, Harbin 150001, China; [email protected] (P.L.); [email protected] (H.W.); Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150001, China 
First page
4411
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2679720909
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.