Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Researchers around the world are developing technologies to minimize carbon dioxide emissions or carbon neutrality in various fields. In this study, the dry spinning of regenerated silk fibroin (RSF) was achieved as a proof of concept for a process using ionic liquids as dissolution aids and plasticizers in developing natural polymeric materials. A dry spinning equipment system combining a stainless-steel syringe and a brushless motor was built to generate fiber compacts from a dope of silk fibroin obtained by degumming silkworm silk cocoons and ionic liquid 1-hexyl-3-methyl-imidazolium chloride ([HMIM][Cl]) according to a general method. The maximum stress and maximum elongation of the RSF fibers were 159.9 MPa and 31.5%, respectively. RSF fibers containing ionic liquids have a homogeneous internal structure according to morphological investigations. Elemental analysis of fiber cross sections revealed the homogeneous distribution of nonvolatile ionic liquid [HMIM][Cl] in RSF fibers. Furthermore, the removal of ionic liquids from RSF fibers through impregnation washing with organic solvents was verified to enhance industrial applications. Tensile testing showed that the fiber strength could be maintained even after removing the ionic liquid. Thermogravimetric analysis results show that the organic solvent 1,1,1,3,3,3-hexafluoro-2-propanol is chemically coordinated to silk fibroin and, as a natural polymer, can withstand heat up to 250 °C.

Details

Title
Novel Dry Spinning Process of Natural Macromolecules for Sustainable Fiber Material -1- Proof of the Concept Using Silk Fibroin
Author
Satoh, Ryo; Morinaga, Takashi; Sato, Takaya  VIAFID ORCID Logo 
First page
4195
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2679788847
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.