Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The excessive use of pesticides and fertilizers during agricultural production causes water pollution, which is an important type of non-point source pollution (NSP). Large amounts of harmful substances, such as nitrogen and phosphorus, flow into surface water along with farmland runoff, leading to eutrophication and other problems. However, the pollutant discharge capacity of different types of cultivated land varies greatly. Areas sensitive to NSP are areas with rich crop types, large spatial differences in crop growth, and complex planting patterns. These factors can cause different amounts of fertilizer used in and absorbed by the crops to influence the emission intensity of pollutants. NSP intensity mapping can reflect the spatial distribution of lands’ pollutant discharge capacity and it can provide a basis for pollution control. However, when estimating NSP intensity, existing methods generally treat cultivated land as a category and ignore how complex crop conditions impact pollution intensity. Remote sensing technology enables the classification and monitoring of ground objects, which can provide rich geographical data for NSP intensity mapping. In this study, we used a phenology–GPP (gross primary productivity) method to extract the spatial distribution of crops in the Yuecheng reservoir catchment area from Sentinel-2 remote sensing images and the overall accuracy reached 85%. Moderate resolution imaging spectroradiometer (MODIS) GPP data were used to simulate the spatial distribution of crop growth. Finally, a new model that is more suitable for farmland was obtained by combining this large amount of remote sensing data with existing mapping models. The findings from this study highlight the differences in spatial distributions between total nitrogen and total phosphorous; they also provide the means to improve NSP intensity estimations.

Details

Title
Phenology–Gross Primary Productivity (GPP) Method for Crop Information Extraction in Areas Sensitive to Non-Point Source Pollution and Its Influence on Pollution Intensity
Author
Li, Mengyao 1 ; Wu, Taixia 1 ; Wang, Shudong 2 ; Shan Sang 1   VIAFID ORCID Logo  ; Zhao, Yuting 1 

 School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China; [email protected] (M.L.); [email protected] (T.W.); [email protected] (S.S.); [email protected] (Y.Z.) 
 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China 
First page
2833
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2679796837
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.