Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The effects of temperature and pre-strain levels on the stress relaxation behavior and corresponding microstructural evolutions of Ti-6Al-4V alloys have been investigated experimentally and numerically in this study. A series of tests (stress relaxation (SR) and repeated stress relaxation (RSR)) and microstructural observations (scanning electron microscope) have been performed, based on which the deformation-related variables, i.e., stress component and activation energy, as a function of the testing time are calculated according to the classical thermal activation theories. The experimental SR behavior and the obtained thermal related variables show that at lower temperatures (700 °C and 750 °C), a large number of dislocations introduced by plastic loading enhance dislocation slip/climb creep, giving rise to rapid relaxation compared with those with elastic loading conditions at the same temperature. At higher temperatures (800 °C and 850 °C), a similar SR phenomenon has been observed at both elastic and plastic loading conditions, which is due to the severe interaction between diffusion creep and dislocation creep after the loading stage. Based on these results, a unified constitutive equation has been proposed to successfully predict the behavior of the whole stress relaxation process composed of the loading stage and subsequent SR stage. The model considering the continuous evolution of internal variables, e.g., dislocation density and lamellar width, in two stages can predict the stress response and microstructure variation with different temperatures from elastic to plastic loading and provide a foundation to effectively optimize the hot forming process combining pre-deformation and stress relaxation.

Details

Title
A Unified Constitutive Model of Stress Relaxation of Ti-6Al-4V Alloy with Different Temperatures from Elastic to Plastic Loading
Author
Zhang, Ying; Li, Dongsheng; Li, Yong; Li, Xiaoqiang
First page
437
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20751702
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2679796874
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.