Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Dual cameras with visible-thermal multispectral pairs provide both visual and thermal appearance, thereby enabling detecting pedestrians around the clock in various conditions and applications, including autonomous driving and intelligent transportation systems. However, due to the greatly varying real-world scenarios, the performance of a detector trained on a source dataset might change dramatically when evaluated on another dataset. A large amount of training data is often necessary to guarantee the detection performance in a new scenario. Typically, human annotators need to conduct the data labeling work, which is time-consuming, labor-intensive and unscalable. To overcome the problem, we propose a novel unsupervised transfer learning framework for multispectral pedestrian detection, which adapts a multispectral pedestrian detector to the target domain based on pseudo training labels. In particular, auxiliary detectors are utilized and different label fusion strategies are introduced according to the estimated environmental illumination level. Intermediate domain images are generated by translating the source images to mimic the target ones, acting as a better starting point for the parameter update of the pedestrian detector. The experimental results on the KAIST and FLIR ADAS datasets demonstrate that the proposed method achieves new state-of-the-art performance without any manual training annotations on the target data.

Details

Title
An Unsupervised Transfer Learning Framework for Visible-Thermal Pedestrian Detection
Author
Lyu, Chengjin  VIAFID ORCID Logo  ; Heyer, Patrick; Goossens, Bart  VIAFID ORCID Logo  ; Philips, Wilfried
First page
4416
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2679845778
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.