Abstract

In alkaline and neutral MEA CO2 electrolyzers, CO2 rapidly converts to (bi)carbonate, imposing a significant energy penalty arising from separating CO2 from the anode gas outlets. Here we report a CO2 electrolyzer uses a bipolar membrane (BPM) to convert (bi)carbonate back to CO2, preventing crossover; and that surpasses the single-pass utilization (SPU) limit (25% for multi-carbon products, C2+) suffered by previous neutral-media electrolyzers. We employ a stationary unbuffered catholyte layer between BPM and cathode to promote C2+ products while ensuring that (bi)carbonate is converted back, in situ, to CO2 near the cathode. We develop a model that enables the design of the catholyte layer, finding that limiting the diffusion path length of reverted CO2 to ~10 μm balances the CO2 diffusion flux with the regeneration rate. We report a single-pass CO2 utilization of 78%, which lowers the energy associated with downstream separation of CO2 by 10× compared with past systems.

In the carbon dioxide (CO2) to multicarbon electrolysis, the crossover CO2 to the oxygen-rich anodic gas stream add a further energy-intensive chemical separation step. Here, the authors demonstrate a bipolar membrane-based electrolyzer design that eliminates the crossover CO2.

Details

Title
Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products
Author
Xie, Ke 1 ; Miao, Rui Kai 2   VIAFID ORCID Logo  ; Ozden, Adnan 2 ; Liu, Shijie 2   VIAFID ORCID Logo  ; Chen, Zhu 1 ; Dinh, Cao-Thang 3 ; Huang, Jianan Erick 1 ; Xu, Qiucheng 4 ; Gabardo, Christine M. 2   VIAFID ORCID Logo  ; Lee, Geonhui 1   VIAFID ORCID Logo  ; Edwards, Jonathan P. 2   VIAFID ORCID Logo  ; O’Brien, Colin P. 2   VIAFID ORCID Logo  ; Boettcher, Shannon W. 4   VIAFID ORCID Logo  ; Sinton, David 2   VIAFID ORCID Logo  ; Sargent, Edward H. 1   VIAFID ORCID Logo 

 University of Toronto, Department of Electrical and Computer Engineering, Toronto, Canada (GRID:grid.17063.33) (ISNI:0000 0001 2157 2938) 
 University of Toronto, Department of Mechanical and Industrial Engineering, Toronto, Canada (GRID:grid.17063.33) (ISNI:0000 0001 2157 2938) 
 Queen’s University, Department of Chemical Engineering, Kingston, Canada (GRID:grid.410356.5) (ISNI:0000 0004 1936 8331) 
 University of Oregon, Department of Chemistry and Biochemistry, Eugene, USA (GRID:grid.170202.6) (ISNI:0000 0004 1936 8008) 
Pages
3609
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2680441445
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.