Full Text

Turn on search term navigation

© 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The cloud drop effective radius (Re) of the drop size distribution derived from passive satellite sensors is a key variable used in climate research. Validation of these satellite products has often taken place under stratiform cloud conditions that favor the assumption of cloud horizontal homogeneity used by the retrieval techniques. However, many studies have noted concerns with respect to significant biases in retrieved Re arising from cloud heterogeneity, for example, in cumulus cloud fields. Here, we examine data collected during the 2019 “Cloud, Aerosol and Monsoon Processes Philippines Experiment” (CAMP2Ex), which, in part, targeted the objective of providing the first detailed evaluation of Re retrieved across multiple platforms and techniques in a cumulus and congestus cloud region. Our evaluation consists of cross-comparisons of Re between the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra satellite, the Research Scanning Polarimeter (RSP) onboard the NASA P-3 aircraft, and in situ measurements from both the NASA P-3 and Learjet aircraft that are all taken in close spatiotemporal proximity to the same cloud fields. A particular advantage of our approach lies in the capability of the RSP to retrieve Re using a bi-spectral MODIS approach and a polarimetric approach, which allows for the evaluation of bi-spectral and polarimetric Re retrievals from an airborne perspective using the same samples.

Averaged over all P-3 flight segments examined here for warm clouds, the RSP polarimetric method, the in situ method, and the bias-adjusted MODIS method of Fu et al. (2019) show a comparable median (mean ± standard deviation) for the Re samples of 9.6 (10.2 ± 4.0) µm, 11.0 (13.6 ± 11.3) µm, and 10.4 (10.8 ± 3.8) µm, respectively. These values are far lower than the values of 15.1 (16.2 ± 5.5) µm and 17.2 (17.7 ± 5.7) µm from the bi-spectral retrievals of RSP and MODIS, respectively. Similar results are observed when Re is segregated by cloud-top height and in detailed case studies. The clouds sampled during CAMP2Ex consist of mostly small (mean transect length 1.4 km) and low clouds (mean cloud-top height 1 km), which had more numerous small clouds than the trade wind cumuli sampled in past field campaigns such as Rain in Shallow Cumulus over the Ocean (RICO) and the Indian Ocean Experiment (INDOEX). The overestimates of Re from the RSP bi-spectral technique compared with the polarimetric technique increased as cloud size and cloud optical depth decreased. Drizzle, cloud-top bumpiness, and solar zenith angle, however, are not closely correlated with the overestimate of bi-spectral Re. For shallow clouds that dominated the liquid cloud cover for the CAMP2Ex region and period, we show that 3-D radiative transfer and cloud heterogeneity, particularly for the optically thin and small clouds, appear to be the leading cause of the large positive biases in bi-spectral retrievals. Because this bias varies with the underlying structure of the cloud field, caution continues to be warranted in studies that use bi-spectral Re retrievals in cumulus cloud fields.

Details

Title
An evaluation of the liquid cloud droplet effective radius derived from MODIS, airborne remote sensing, and in situ measurements from CAMP2Ex
Author
Fu, Dongwei 1   VIAFID ORCID Logo  ; Larry Di Girolamo 1   VIAFID ORCID Logo  ; Rauber, Robert M 1 ; McFarquhar, Greg M 2   VIAFID ORCID Logo  ; Nesbitt, Stephen W 1 ; Loveridge, Jesse 1 ; Hong, Yulan 1   VIAFID ORCID Logo  ; Bastiaan van Diedenhoven 3   VIAFID ORCID Logo  ; Cairns, Brian 4 ; Alexandrov, Mikhail D 4 ; Lawson, Paul 5 ; Woods, Sarah 5 ; Tanelli, Simone 6 ; Schmidt, Sebastian 7   VIAFID ORCID Logo  ; Hostetler, Chris 8 ; Scarino, Amy Jo 9 

 Department of Atmospheric Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA 
 Cooperative Institute for Severe and High-Impact Weather Research and Operations, The University of Oklahoma, Norman, Oklahoma, USA; School of Meteorology, The University of Oklahoma, Norman, Oklahoma, USA 
 SRON Netherlands Institute for Space Research, Leiden, the Netherlands 
 NASA Goddard Institute for Space Studies, New York City, New York, USA 
 Stratton Park Engineering Company, Inc., Boulder, Colorado, USA 
 Jet Propulsion Laboratory, Pasadena, California, USA 
 Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado, USA; Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado, USA 
 NASA Langley Research Center, Hampton, Virginia, USA 
 Science Systems and Applications, Inc., Hampton, Virginia, USA 
Pages
8259-8285
Publication year
2022
Publication date
2022
Publisher
Copernicus GmbH
ISSN
16807316
e-ISSN
16807324
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2680997127
Copyright
© 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.