It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Nonconventional or nonconjugated luminophore without polycyclic aromatics or extended π-conjugation is a rising star in the area of luminescent materials. However, continuously tuning the emission color within a broad visible region via rational molecular design remains quite challenging because the mechanism of nonconventional luminescence is not fully understood. Herein, we present a new class of nonconventional luminophores, poly(maleimide)s (PMs), with full-color emission that can be finely regulated by anionic polymerization even at ambient temperature. Interestingly, the general characteristics of nonconventional luminescence, cluster-triggered emission, e.g., concentration-enhanced emission, are not observed in PMs. Instead, PMs have features similar to aggregation-caused quenching due to boosted intra/inter-molecular charge transfer. Such a biocompatible luminescent material synthesized from a low-cost monomer shows great prospects in large-scale production and applications, including security printing, fingerprint identification, metal ion recognition, etc. It also provides a new platform of rational molecular design to achieve full-color nonconventional luminescence without any aromatics.
Nonconventional luminophores without extended π-conjugation is a rising star in the area of luminescent materials but continuously tuning the emission color within a broad visible region via rational molecular design remains challenging. Here, the authors present poly(maleimide)s as a new class of nonconventional luminophores with fully tunable room temperature color emission that can be regulated by anionic polymerization
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Institute of Chemistry Chinese Academy of Sciences (CAS), Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Beijing, China (GRID:grid.418929.f) (ISNI:0000 0004 0596 3295); University of Chinese Academy of Sciences, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419)
2 Institute of Chemistry Chinese Academy of Sciences (CAS), Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Beijing, China (GRID:grid.418929.f) (ISNI:0000 0004 0596 3295)
3 Tianjin University, School of Chemical Engineering and Technology, Tianjin, China (GRID:grid.33763.32) (ISNI:0000 0004 1761 2484)