Full text

Turn on search term navigation

© 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Understanding the mechanisms underlying tumour heterogeneity is key to the development of treatments that can target specific tumour subtypes. We have previously targeted CRE recombinase-dependent conditional deletion of the tumour suppressor genes Brca1, Brca2, p53 (also known as Trp53) and/or Pten to basal or luminal oestrogen receptor-negative (ER) cells of the mouse mammary epithelium. We demonstrated that both the cell-of-origin and the tumour-initiating genetic lesions cooperate to influence mammary tumour phenotype. Here, we use a CRE-activated HER2 orthologue to specifically target HER2/ERBB2 oncogenic activity to basal or luminal ER mammary epithelial cells and perform a detailed analysis of the tumours that develop. We find that, in contrast to our previous studies, basal epithelial cells are less sensitive to transformation by the activated NeuKI allele, with mammary epithelial tumour formation largely confined to luminal ER cells. Histologically, most tumours that developed were classified as either adenocarcinomas of no special type or as metaplastic adenosquamous tumours. The former were typically characterized by amplification of the NeuNT/Erbb2 locus; in contrast, tumours displaying squamous metaplasia were enriched in animals that had been through at least one pregnancy and typically had lower levels of NeuNT/Erbb2 locus amplification but had activated canonical WNT signalling. Squamous changes in these tumours were associated with activation of the epidermal differentiation cluster. Thus, in this model of HER2 breast cancer, cell-of-origin, reproductive history, NeuNT/Erbb2 locus amplification and the activation of specific branches of the WNT signalling pathway all interact to drive inter-tumour heterogeneity.

Details

Title
Reproductive history determines Erbb2 locus amplification, WNT signalling and tumour phenotype in a murine breast cancer model
Author
Ordonez, Liliana D; Melchor, Lorenzo  VIAFID ORCID Logo  ; Greenow, Kirsty R  VIAFID ORCID Logo  ; Kendrick, Howard  VIAFID ORCID Logo  ; Tornillo, Giusy  VIAFID ORCID Logo  ; Bradford, James  VIAFID ORCID Logo  ; Giles, Peter; Smalley, Matthew J  VIAFID ORCID Logo 
Section
RESEARCH ARTICLES
Publication year
2021
Publication date
2021
Publisher
The Company of Biologists Ltd
ISSN
17548403
e-ISSN
17548411
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2681869114
Copyright
© 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.