It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
On-chip training remains a challenging issue for photonic devices to implement machine learning algorithms. Most demonstrations only implement inference in photonics for offline-trained neural network models. On the other hand, artificial neural networks are one of the most deployed algorithms, while other machine learning algorithms such as supporting vector machine (SVM) remain unexplored in photonics. Here, inspired by SVM, we propose to implement projection-based classification principle by constructing nonlinear mapping functions in silicon photonic circuits and experimentally demonstrate on-chip bacterial foraging training for this principle to realize single Boolean logics, combinational Boolean logics, and Iris classification with ~96.7 − 98.3 per cent accuracy. This approach can offer comparable performances to artificial neural networks for various benchmarks even with smaller scales and without leveraging traditional activation functions, showing scalability advantage. Natural-intelligence-inspired bacterial foraging offers efficient and robust on-chip training, and this work paves a way for photonic circuits to perform nonlinear classification.
On-chip training of machine learning algorithms is challenging for photonic devices. Here, the authors construct nonlinear mapping functions in silicon photonic circuits, and experimentally demonstrate on-chip bacterial foraging training for projection-based classification.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details





1 National Institute of Advanced Industrial Science and Technology (AIST), Platform Photonics Research Center, Ibaraki, Japan (GRID:grid.208504.b) (ISNI:0000 0001 2230 7538)
2 NTT Basic Research labs., Atsugi-shi, Japan (GRID:grid.419819.c) (ISNI:0000 0001 2184 8682)