It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This work addresses hand mesh recovery from a single RGB image. In contrast to most of the existing approaches where parametric hand models are employed as the prior, we show that the hand mesh can be learned directly from the input image. We propose a new type of GAN called Im2Mesh GAN to learn the mesh through end-to-end adversarial training. By interpreting the mesh as a graph, our model is able to capture the topological relationship among the mesh vertices. We also introduce a 3D surface descriptor into the GAN architecture to further capture the associated 3D features. We conduct experiments with the proposed Im2Mesh GAN architecture in two settings: one where we can reap the benefits of coupled groundtruth data availability of the images and the corresponding meshes; and the other which combats the more challenging problem of mesh estimation without the corresponding groundtruth. Through extensive evaluations we demonstrate that even without using any hand priors the proposed method performs on par or better than the state-of-the-art.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Queensland University of Technology, Signal Processing, Artificial Intelligence and Vision Technologies (SAIVT) Lab, Brisbane, Australia (GRID:grid.1024.7) (ISNI:0000000089150953)