HIGHLIGHTS
Effect of Walking Modes and Temperatures on the Robustness of Ventilation Systems in the Control of Walking-induced Disturbances
Jianlin Ren1, Junjie He1, Leihong Guo2, Hongwan Li3, Xiangfei Kong 1
1 School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
2 Tianjin Jin’an Thermal Power Co., Ltd., Tianjin 300050, China
3 Department of Environmental Engineering Sciences, University of Florida, FL 32611, USA
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Ventilation system’s effectiveness can be affected by walking-induced disturbances. A series of experiments were performed in a chamber in this study considering the following parameter variations: four types of ventilation systems (i.e., ceiling supply and side return, ceiling supply and ceiling return, side supply and ceiling return, side supply and side return), three temperature levels (18°C, 23°C, 28°C), and three walking modes (W1, W2, W3). The test results showed that the cumulative particle exposure levels under walking modes W1, W2 and W3 were 2.04 ± 0.27, 1.72 ± 0.26 and 0.87 ± 0.12 times the exposure levels without human walking. The four ventilation systems can maintain a high stability of the indoor temperature field; however, different walking modes and ventilation systems would result in different walking-induced disturbances of the pollutant and flow fields. For the flow field, the range scale robustness (RSr) value with ventilation system was 4.0%–18.2% higher than that without ventilation system. The highest RSr value was achieved by the side supply and side return (SS) system. For the pollutant field, the RSr and time scale robustness (TSr) can be increased by 23.0%–44.0% and 11.5%–23.3% due to the ventilation systems, respectively. The RSr value of the SS system was still the largest, 18.7% larger than the smallest value. With the increase in temperature from 18°C to 28°C, the RSr and TSr of the different ventilation systems decreased by 7.7%–18.4% and 1.3%–15.7%, respectively. A ventilation system with high particle-removal efficiency may not be effective in controlling indoor disturbances. The database and method developed in this study could be beneficial for the control of human walking-induced disturbances in those settings that require a highly controlled indoor environment.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer