Full text

Turn on search term navigation

© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

DYRK1A is a major causative gene in Down syndrome (DS). Reduced incidence of solid tumors such as neuroblastoma in DS patients and increased vascular anomalies in DS fetuses suggest a potential role of DYRK1A in angiogenic processes, but in vivo evidence is still scarce. Here, we used zebrafish dyrk1aa mutant embryos to understand DYRK1A function in cerebral vasculature formation. Zebrafish dyrk1aa mutants exhibited cerebral hemorrhage and defects in angiogenesis of central arteries in the developing hindbrain. Such phenotypes were rescued by wild-type dyrk1aa mRNA, but not by a kinase-dead form, indicating the importance of DYRK1A kinase activity. Chemical screening using a bioactive small molecule library identified a calcium chelator, EGTA, as one of the hits that most robustly rescued the hemorrhage. Vascular defects of mutants were also rescued by independent modulation of calcium signaling by FK506. Furthermore, the transcriptomic analyses supported the alterations of calcium signaling networks in dyrk1aa mutants. Together, our results suggest that DYRK1A plays an essential role in angiogenesis and in maintenance of the developing cerebral vasculature via regulation of calcium signaling, which may have therapeutic potential for DYRK1A-related vascular diseases.

Details

Title
Vascular defects of DYRK1A knockouts are ameliorated by modulating calcium signaling in zebrafish
Author
Hyun-Ju, Cho; Lee, Jae-Geun; Kim, Jong-Hwan; Seon-Young, Kim; Huh, Yang Hoon; Hyo-Jeong, Kim; Kyu-Sun, Lee; Kweon Yu; Jeong-Soo, Lee  VIAFID ORCID Logo 
Section
RESEARCH ARTICLES
Publication year
2019
Publication date
2019
Publisher
The Company of Biologists Ltd
ISSN
17548403
e-ISSN
17548411
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2684658556
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.