Full text

Turn on search term navigation

© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To define renal molecular mechanisms that are affected by permanent hyperglycaemia and might promote phenotypes relevant to diabetic nephropathy, we carried out linkage analysis of genome-wide gene transcription in the kidneys of F2 offspring from the Goto-Kakizaki (GK) rat model of type 2 diabetes and normoglycaemic Brown Norway (BN) rats. We mapped 2526 statistically significant expression quantitative trait loci (eQTLs) in the cross. More than 40% of eQTLs mapped in the close vicinity of the linked transcripts, underlying possible cis-regulatory mechanisms of gene expression. We identified eQTL hotspots on chromosomes 5 and 9 regulating the expression of 80-165 genes, sex or cross direction effects, and enriched metabolic and immunological processes by segregating GK alleles. Comparative analysis with adipose tissue eQTLs in the same cross showed that 496 eQTLs, in addition to the top enriched biological pathways, are conserved in the two tissues. Extensive similarities in eQTLs mapped in the GK rat and in the spontaneously hypertensive rat (SHR) suggest a common aetiology of disease phenotypes common to the two strains, including insulin resistance, which is a prominent pathophysiological feature in both GK rats and SHRs. Our data shed light on shared and tissue-specific molecular mechanisms that might underlie aetiological aspects of insulin resistance in the context of spontaneously occurring hyperglycaemia and hypertension.

Details

Title
Conserved properties of genetic architecture of renal and fat transcriptomes in rat models of insulin resistance
Author
Otto, Georg W  VIAFID ORCID Logo  ; Kaisaki, Pamela J; Brial, Francois; Aurélie Le Lay; Cazier, Jean-Baptiste; Mott, Richard; Gauguier, Dominique  VIAFID ORCID Logo 
Section
RESEARCH ARTICLES
Publication year
2019
Publication date
2019
Publisher
The Company of Biologists Ltd
ISSN
17548403
e-ISSN
17548411
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2684659300
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.