It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Efficient, accurate molecular characterization of genetically modified (GM) organisms is challenging, especially for those transgenic events transferred with genes/elements of recipient species. Herein, we decipher the comprehensive molecular characterization of one novel GM rice event G281 which was transferred with native promoters and an RNA interference (RNAi) expression cassette using paired-end whole genome sequencing (PE-WGS) and modified TranSeq approach. Our results show that transgenes integrate at rice chromosome 3 locus 16,439,674 included a 36 bp deletion of rice genomic DNA, and the whole integration contains two copies of the complete transfer DNA (T-DNA) in a head-to-head arrangement. No unintended insertion or backbone sequence of the transformed plasmid is observed at the whole genome level. Molecular characterization of the G281 event will assist risk assessment and application for a commercial license. In addition, we speculate that our approach could be further used for identifying the transgene integration of cisgenesis/intragenesis crops since both ends of T-DNA in G281 rice were from native gene or elements which is similar with that of cisgenesis/intrasgenesis. Our results from the in silico mimicking cisgenesis event confirm that the mimic rice Gt1 gene insertion and its flanking sequences are successfully identified, demonstrating the applicability of PE-WGS for molecular characterization of cisgenesis/intragenesis crops.
Coupling paired-end whole-genome sequencing with droplet digital PCR enabled precise identification of a transgene insertion in the genetically modified rice event G281 on chromosome 3 and the potential for exploring the native gene integration.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Shanghai Jiao Tong University, National Center for the Molecular Characterization of Genetically Modified Organisms, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai, China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293)
2 Ministry of Agriculture of People’s Republic of China, Development Center of Science and Technology, Beijing, China (GRID:grid.418524.e) (ISNI:0000 0004 0369 6250)
3 Plant and Food Inspection and Quarantine of Shanghai Customs, Technical Center for Animal, Shanghai, China (GRID:grid.418524.e)