It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Kawasaki disease (KD), the most common cause of acquired heart disease in children, can be easily missed as it shares clinical findings with other pediatric illnesses, leading to risk of myocardial infarction or death. KD remains a clinical diagnosis for which there is no diagnostic test, yet there are classic findings on exam that can be captured in a photograph. This study aimed to develop a deep convolutional neural network, KD-CNN, to differentiate photographs of KD clinical signs from those of other pediatric illnesses. To create the dataset, we used an innovative combination of crowdsourcing images and downloading from public domains on the Internet. KD-CNN was then pretrained using transfer learning from VGG-16 and fine-tuned on the KD dataset, and methods to compensate for limited data were explored to improve model performance and generalizability. KD-CNN achieved a median AUC of 0.90 (IQR 0.10 from tenfold cross validation), with a sensitivity of 0.80 (IQR 0.18) and specificity of 0.85 (IQR 0.19) to distinguish between children with and without clinical manifestations of KD. KD-CNN is a novel application of CNN in medicine, with the potential to assist clinicians in differentiating KD from other pediatric illnesses and thus reduce KD morbidity and mortality.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of California San Diego and Rady Children’s Hospital, Department of Pediatrics, San Diego, USA (GRID:grid.266100.3) (ISNI:0000 0001 2107 4242)
2 UC San Diego Health, University of California San Diego, Department of Biomedical Informatics, La Jolla, USA (GRID:grid.266100.3) (ISNI:0000 0001 2107 4242)