Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

GBM treatment is an area of high unmet need due to the heterogeneous and anaplastic character of this cancer in turn leading to an extremely poor prognosis. Finding new molecular entities by traditional or de novo approaches to drug discovery is lengthy and expensive. Repurposing existing drugs can be attractive as the process is often less risky, more cost, and time-effective. Amongst potential drug-repurposing candidates, Pyronaridine (PYR), an antimalarial drug has shown anti-cancer effects against several cancers, however, its potential for the treatment of GBM has not been explored. In this study, we have identified a unique mechanism of action of PYR against GBM by upregulating a tumor suppressor protein, Par-4 along with the elucidation of the complex network of pathways mediated through Par-4 leading to GBM cell death.

Abstract

Glioblastoma (GBM) is an aggressive form of brain tumor with a median survival of approximately 12 months. With no new drugs in the last few decades and limited success in clinics for known therapies, drug repurposing is an attractive choice for its treatment. Here, we examined the efficacy of pyronaridine (PYR), an anti-malarial drug in GBM cells. PYR induced anti-proliferative activity in GBM cells with IC50 ranging from 1.16 to 6.82 µM. Synergistic activity was observed when PYR was combined with Doxorubicin and Ritonavir. Mechanistically, PYR triggered mitochondrial membrane depolarization and enhanced the ROS levels causing caspase-3 mediated apoptosis. PYR significantly decreased markers associated with proliferation, EMT, hypoxia, and stemness and upregulated the expression of E-cadherin. Interestingly, PYR induced the expression of intracellular as well as secretory Par-4, a tumor suppressor in GBM cells, which was confirmed using siRNA. Notably, Par-4 levels in plasma samples of GBM patients were significantly lower than normal healthy volunteers. Thus, our study demonstrates for the first time that PYR can be repurposed against GBM with a novel mechanism of action involving Par-4. Herewith, we discuss the role of upregulated Par-4 in a highly interconnected signaling network thereby advocating its importance as a therapeutic target.

Details

Title
Prostate Apoptosis Response-4 (Par-4): A Novel Target in Pyronaridine-Induced Apoptosis in Glioblastoma (GBM) Cells
Author
Ghosalkar, Jeevan 1 ; Sonawane, Vinay 1   VIAFID ORCID Logo  ; Pisal, Tejal 1 ; Achrekar, Swati 1   VIAFID ORCID Logo  ; Pujari, Radha 2 ; Chugh, Ashish 3 ; Shastry, Padma 2 ; Joshi, Kalpana 1   VIAFID ORCID Logo 

 Cell Biology Division, Cipla Ltd., Vikhroli, Mumbai 400083, India; [email protected] (J.G.); [email protected] (V.S.); [email protected] (T.P.); [email protected] (S.A.) 
 National Centre for Cell Sciences (NCCS), Pune 411007, India; [email protected] 
 Department of Neurosurgery, D.Y. Patil Medical College, Pune 411018, India; [email protected] 
First page
3198
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2685969268
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.