Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the development of the hyperspectral imaging technique, hyperspectral image (HSI) classification is receiving more and more attention. However, due to high dimensionality, limited or unbalanced training samples, spectral variability, and mixing pixels, it is challenging to achieve satisfactory performance for HSI classification. In order to overcome these challenges, this paper proposes a feature extraction method called spatial perception correntropy matrix (SPCM), which makes use of spatial and spectral correlation simultaneously to improve the classification accuracy and robustness. Specifically, the dimension reduction is carried out firstly. Then, the spatial perception method is designed to select the local neighbour pixels. Thus, local spectral-spatial correlation is characterized by the correntropy matrix constructed using the selected neighbourhoods. Finally, SPCM representations are fed into the support vector machine for classification. The extensive experiments carried out on three widely used data sets have revealed that the proposed SPCM performs better than several state-of-the-art methods, especially when the training set is small.

Details

Title
Spatial Perception Correntropy Matrix for Hyperspectral Image Classification
Author
Zhang, Guochao 1   VIAFID ORCID Logo  ; Cao, Weijia 2   VIAFID ORCID Logo  ; Wei, Yantao 1   VIAFID ORCID Logo 

 Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan 430079, China; [email protected] 
 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; Department of Computer and Information Science, University of Macau, Macau 999078, China; Yangtze Three Gorges Technology and Economy Development Co., Ltd., Beijing 101100, China 
First page
6797
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2685971278
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.