Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Personal care products (PCPs) enter wastewater primarily through greywater. Treatment plants have not been able to remove this type of contaminant, although PCP abatement techniques have been developed in recent years. The objective of the current study has been to encounter the sustainable technique that keeps the optimal balance between the criteria considered in the comparison. Therefore, a bibliographic review was conducted in scientific databases of the last eight years, demonstrating that co-composting, anaerobic–aerobic sequencing bioreactors and contaminant absorption through the use of carbon nanotubes are the ones with the least environmental impact. Subsequently, the Saaty and Modified Saaty methods were applied, with a comparative criteria of construction costs, maintenance costs, efficiency and the stage of development. The results indicated that the co-composting technique is the best sustainable technique of those studied, with a score of 0.86/1, which means that the criteria analyzed maintain very close values between them. The co-composting technique yields a low environmental impact in eliminating personal care products. This research work constitutes a practical and easy-to-use tool for decision makers, since it allows finding an optimal elimination treatment for PCPs.

Details

Title
Sustainable Treatment Techniques for Emerging Pollutants—The Case of Personal Hygiene Products
Author
Dueñas-Muñoz, Deysi  VIAFID ORCID Logo  ; Guevara, Odalis  VIAFID ORCID Logo  ; Oviedo, Galo-Rafael  VIAFID ORCID Logo  ; Crisanto-Perrazo, Tania  VIAFID ORCID Logo  ; Toulkeridis, Theofilos  VIAFID ORCID Logo 
First page
6330
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2685973657
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.