Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The central melanocortin system conducted by anorexigenic pro-opiomelanocortin (POMC) neurons and orexigenic agouti-related peptide (AgRP) neurons in the arcuate nucleus of the hypothalamus (ARC) not only regulates feeding behavior but also blood pressure. Excessive salt intake raises the Na+ concentration ([Na+]) in the cerebrospinal fluid (CSF) and worsens hypertension. The blood–brain barrier is immature in the ARC. Therefore, both AgRP and POMC neurons in the ARC have easy access to the electrolytes in the blood and can sense changes in their concentrations. However, the sensitivity of AgRP and POMC neurons to Na+ remains unclear. This study aimed to explore how the changes in the extracellular Na+ concentration ([Na+]) influence these neurons by measuring the cytosolic Ca2+ concentration ([Ca2+]i) in the single neurons isolated from the ARC that were subsequently immunocytochemically identified as AgRP or POMC neurons. Both AgRP and POMC neurons responded to increases in both [Na+] and osmolarity in C57BL/6 mice. In contrast, in transient receptor potential vanilloid 1 (TRPV1) knockout (KO) mice, POMC neurons failed to respond to increases in both [Na+] and osmolarity, while they responded to high glucose and angiotensin II levels with increases in [Ca2+]i. Moreover, in KO mice fed a high-salt diet, the expression of POMC was lower than that in wild-type mice. These results demonstrate that changes in [Na+] and osmolarity are sensed by the ARC POMC neurons via the TRPV1-dependent mechanism.

Details

Title
TRPV1-Mediated Sensing of Sodium and Osmotic Pressure in POMC Neurons in the Arcuate Nucleus of the Hypothalamus
Author
Zhang, Boyang 1 ; Kario, Kazuomi 2 ; Yada, Toshihiko 3 ; Nakata, Masanori 1 

 Department of Physiology, Faculty of Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama 641-8509, Japan; [email protected] 
 Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University, Yakushiji 3311-1, Shimotsuke 329-0498, Japan; [email protected] 
 Center for Integrative Physiology, Kansai Electric Power Medical Research Institute, 1-5-6 Minatojimaminamimachi, Chuou-ku, Kobe 650-0047, Japan; [email protected]; Department of Diabetes, Endocrinology and Metabolism, Gifu University Graduate School of Medicine, Yanagido1-1, Gifu 501-1194, Japan 
First page
2600
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20726643
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2686054382
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.