Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The incorporation of superelastic shape memory alloy (SMA) fibers into engineered cementitious composite (ECC) materials can provide high seismic energy dissipation and deformation self-centering capabilities for ECC materials. Whether the SMA fibers can be sufficiently bonded or anchored in the ECC matrix and whether the mechanical properties of the SMA fibers in the ECC matrix can be effectively utilized are the key scientific issues that urgently need to be studied. In order to study the mechanical behavior of SMA fiber embedded in ECC matrix, four groups of semi-dog-bone pullout specimens were fabricated, and the cyclic pullout tests were conducted in this paper. The pullout stress, displacement, and self-centering capability were analyzed, and different influencing factors were discussed. The results show that the knotted ends can provide sufficient anchorage force for SMA fibers, and the maximum pullout stress of SMA fiber can reach 1100 MPa, thus the superelasticity can be effectively stimulated. The SMA fibers show excellent self-centering capability in the test. The minimum residual deformation in the test is only 0.29 mm, and the maximum self-centering ratio can reach 0.93. Increasing bond length can increase the ultimate strain of SMA fibers with knotted ends, but reduce the maximum pullout stress. Increasing fiber diameter can increase both the ultimate strain and the maximum stress of knotted end SMA fibers. While neither bond length nor fiber diameter has significant effect on the self-centering ratio. This paper provides a theoretical basis for further study of the combination of SMA fibers and ECC materials.

Details

Title
Mechanical Behavior of Shape Memory Alloy Fibers Embedded in Engineered Cementitious Composite Matrix under Cyclic Pullout Loads
Author
Zhao, Yang 1   VIAFID ORCID Logo  ; Du, Yalong 2 ; Liang, Yujia 2 ; Ke, Xiaolong 2 

 School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China; [email protected] (Y.D.); [email protected] (Y.L.); [email protected] (X.K.); Institute of High Performance Engineering Structure, Wuhan University of Science and Technology, Wuhan 430065, China 
 School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China; [email protected] (Y.D.); [email protected] (Y.L.); [email protected] (X.K.) 
First page
4531
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2686095710
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.