Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Leaf veins constitute the transport network for water and photosynthetic assimilates in vascular plants. The class III homeodomain-leucine zipper (HD-Zip III) gene family is central to the regulation of vascular development. In this research, we performed an overall analysis of the HD-Zip III genes in soybean (Glycine max L. Merr.). Our analysis included the phylogeny, conservation domains and cis-elements in the promoters of these genes. We used the quantitative reverse transcription-polymerase chain reaction to characterize the expression patterns of HD-Zip III genes in leaf vein development and analyze the effects of exogenous hormone treatments. In this study, twelve HD-Zip III genes were identified from the soybean genome and named. All soybean HD-Zip III proteins contained four highly conserved domains. GmHB15-L-1 transcripts showed steadily increasing accumulation during all stages of leaf vein development and were highly expressed in cambium cells. GmREV-L-1 and GmHB14-L-2 had nearly identical expression patterns in soybean leaf vein tissues. GmREV-L-1 and GmHB14-L-2 transcripts remained at stable high levels at all xylem developmental stages. GmREV-L-1 and GmHB14-L-2 were expressed at high levels in the vascular cambium and xylem cells. Overall, GmHB15-L-1 may be an essential regulator that is responsible for the formation or maintenance of soybean vein cambial cells. GmREV-L-1 and GmHB14-L-2 were correlated with xylem differentiation in soybean leaf veins. This study will pave the way for identifying the molecular mechanism of leaf vein development.

Details

Title
HD-Zip III Gene Family: Identification and Expression Profiles during Leaf Vein Development in Soybean
Author
Gao, Jing 1 ; Chen, Jiyu 1 ; Feng, Lingyang 1 ; Wang, Qi 1 ; Li, Shenglan 1 ; Tan, Xianming 1 ; Yang, Feng 1 ; Yang, Wenyu 1 

 College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, China; [email protected] (J.G.); [email protected] (J.C.); [email protected] (L.F.); [email protected] (Q.W.); [email protected] (S.L.); [email protected] (X.T.); [email protected] (W.Y.); Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130, China; Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China 
First page
1728
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22237747
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2686140827
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.