Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, our design aims to assist in sleep inertia reduction and avoid the startle response and irritation caused by alarm-made unpleasant wakeup stimuli. Thus, we propose an approach that employs a soft and alerting sunrise simulation, conditionally utilizes natural light, and appropriately lowers the bedroom temperature for awakening a sleeper tenderly and gradually to gain full alertness. This approach is inspired by known scientific implications confirming the effectiveness of lights and temperatures on wakefulness. In this regard, we present an economical do-it-yourself digital tech-assisted system for bedroom lighting and temperature control. The system design is based on the smartphone and Internet of Things (IoT) technology. We develop the hardware and software in the system for implementing three IoT-based control tasks. One is the tuning of artificial light brightness using the pulse width modulation technique. Another is the opening of the window curtain using stepper motor control and light detection. The other is the activation of the air-conditioning setting using an infrared remote control and temperature detection. We construct a testbed for conducting experiments. Experimental results demonstrate that the proposed system can execute task requirements satisfactorily. The proposed system is promising for achieving our goal. It embodies features of sustainability.

Details

Title
Toward Sustainable Gentle Awakenings and Sleep Inertia Mitigation: A Low-Cost IoT-Based Adaptable Lighting and Temperature Control Approach
Author
Tan-Jan, Ho  VIAFID ORCID Logo  ; Min-Yan, Huang; Meng-Yu, Chou; Bo-Han, Huang; Zhuang, Ru-En
First page
7928
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2686184040
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.