Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study proposes a new intelligent diagnostic method for bearing faults in rotating machinery. The method uses a combination of nonlinear mode decomposition based on the improved fast kurtogram, gramian angular field, and convolutional neural network to detect the bearing state of rotating machinery. The nonlinear mode decomposition based on the improved fast kurtogram inherits the advantages of the original algorithm while improving the computational efficiency and signal-to-noise ratio. The gramian angular field can construct a two-dimensional image without destroying the time relationship of the signal. Therefore, the proposed method can perform fault diagnosis on rotating machinery under complex operating conditions. The proposed method is verified on the Paderborn dataset under heavy noise and multiple operating conditions to evaluate its effectiveness. Experimental results show that the proposed model outperforms wavelet denoising and the traditional adaptive decomposition method. The proposed model achieves over 99.6% accuracy in all four operating conditions provided by this dataset, and 93.8% accuracy in a strong noise environment with a signal-to-noise ratio of −4 dB.

Details

Title
A Robust Deep Neural Network for Rolling Element Fault Diagnosis under Various Operating and Noisy Conditions
Author
Chun-Yao, Lee 1   VIAFID ORCID Logo  ; Guang-Lin Zhuo 1   VIAFID ORCID Logo  ; Truong-An, Le 2   VIAFID ORCID Logo 

 Department of Electrical Engineering, Chung Yuan Christian University, Taoyuan 320314, Taiwan; [email protected] 
 Department of Electrical and Electronic Engineering, Thu Dau Mot University, Thu Dau Mot 75000, Binh Duong, Vietnam; [email protected] 
First page
4705
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2686188557
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.