Full text

Turn on search term navigation

This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Prion diseases are a group of fatal, transmissible neurodegenerative diseases of mammals. In the brain, axonal loss and neuronal death are prominent in prion infection, but the mechanisms remain poorly understood. Sterile alpha and heat/Armadillo motif 1 (SARM1) is a protein expressed in neurons of the brain that plays a critical role in axonal degeneration. Following damage to axons, it acquires an NADase activity that helps to regulate mitochondrial health by breaking down NAD+, a molecule critical for mitochondrial respiration. SARM1 has been proposed to have a protective effect in prion disease, and we hypothesized that it its role in regulating mitochondrial energetics may be involved. We therefore analyzed mitochondrial respiration in SARM1 knockout mice (SARM1KO) and wild-type mice inoculated either with prions or normal brain homogenate. Pathologically, disease was similar in both strains of mice, suggesting that SARM1 mediated axonal degradation is not the sole mechanism of axonal loss during prion disease. However, mitochondrial respiration was significantly increased and disease incubation time accelerated in prion infected SARM1KO mice when compared to wild-type mice. Increased levels of mitochondrial complexes II and IV and decreased levels of NRF2, a potent regulator of reactive oxygen species, were also apparent in the brains of SARM1KO mice when compared to wild-type mice. Our data suggest that SARM1 slows prion disease progression, likely by regulating mitochondrial respiration, which may help to mitigate oxidative stress via NRF2.

Details

Title
Lack of the immune adaptor molecule SARM1 accelerates disease in prion infected mice and is associated with increased mitochondrial respiration and decreased expression of NRF2
Author
Ward, Anne; Jessop, Forrest; Faris, Robert; Shoup, Daniel; Bosio, Catharine M; Peterson, Karin E; Priola, Suzette A  VIAFID ORCID Logo 
First page
e0267720
Section
Research Article
Publication year
2022
Publication date
May 2022
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2686209021
Copyright
This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.