Full text

Turn on search term navigation

© 2022 Liang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The brown alga Silvetia siliquosa (Tseng et Chang) Serrão, Cho, Boo & Brawly is endemic to the Yellow-Bohai Sea and southwestern Korea. It is increasingly endangered due to habitat loss and excessive collection. Here, we sequenced the mitochondrial (mt) and chloroplast (cp) genomes of S. siliquosa. De novo assembly showed that the mt-genome was 36,036 bp in length, including 38 protein-coding genes (PCGs), 26 tRNAs, and 3 rRNAs, and the cp-genome was 124,991 bp in length, containing 139 PCGs, 28 tRNAs, and 6 rRNAs. Gene composition, gene number, and gene order of the mt-genome and cp-genome were very similar to those of other species in Fucales. Phylogenetic analysis revealed a close genetic relationship between S. siliquosa and F. vesiculosus, which diverged approximately 8 Mya (5.7–11.0 Mya), corresponding to the Late Miocene (5.3–11.6 Ma). The synonymous substitution rate of mitochondrial genes of phaeophycean species was 1.4 times higher than that of chloroplast genes, but the cp-genomes were more structurally variable than the mt-genomes, with numerous gene losses and rearrangements among the different orders in Phaeophyceae. This study reports the mt- and cp-genomes of the endangered S. siliquosa and improves our understanding of its phylogenetic position in Phaeophyceae and of organellar genomic evolution in brown algae.

Details

Title
The organellar genomes of Silvetia siliquosa (Fucales, Phaeophyceae) and comparative analyses of the brown algae
Author
Liang, Yanshuo; Han-Gil, Choi; Zhang, Shuangshuang; Zi-Min Hu; Duan, Delin  VIAFID ORCID Logo 
First page
e0269631
Section
Research Article
Publication year
2022
Publication date
Jun 2022
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2686270118
Copyright
© 2022 Liang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.