Abstract

Long-pulse operation of a self-sustained fusion reactor using toroidal magnetic containment requires control over the content of alpha particles produced by D-T fusion reactions. On the one hand, MeV-class alpha particles must stay confined to heat the plasma. On the other hand, decelerated helium ash must be expelled before diluting the fusion fuel. Here, we report results of kinetic-magnetohydrodynamic hybrid simulations of a large tokamak plasma that confirm the existence of a parameter window where such energy-selective confinement can be accomplished by exploiting internal relaxation events known as sawtooth crashes. The physical picture — a synergy between magnetic geometry, optimal crash duration and rapid particle motion — is completed by clarifying the role of magnetic drifts. Besides causing asymmetry between co- and counter-going particle populations, magnetic drifts determine the size of the confinement window by dictating where and how much reconnection occurs in particle orbit topology.

Confining plasma for fusion requires controlling many parameters. Here the authors report the existence of a narrow parameter space for the simultaneous confinement of energetic alpha particles and removal of slowed-down helium ash in a magnetically confined fusion plasma by using kinetic-magnetohydrodynamic hybrid simulations.

Details

Title
Energy-selective confinement of fusion-born alpha particles during internal relaxations in a tokamak plasma
Author
Bierwage, A. 1   VIAFID ORCID Logo  ; Shinohara, K. 2   VIAFID ORCID Logo  ; Kazakov, Ye.O. 3   VIAFID ORCID Logo  ; Kiptily, V. G. 4 ; Lauber, Ph. 5 ; Nocente, M. 6   VIAFID ORCID Logo  ; Štancar, Ž. 7   VIAFID ORCID Logo  ; Sumida, S. 8 ; Yagi, M. 9 ; Garcia, J. 10   VIAFID ORCID Logo  ; Ide, S. 11 

 Rokkasho Fusion Institute, Rokkasho, National Institutes for Quantum Science and Technology (QST), Aomori, Japan; Naka Fusion Institute, National Institutes for Quantum Science and Technology (QST), Naka, Japan 
 Naka Fusion Institute, National Institutes for Quantum Science and Technology (QST), Naka, Japan; The University of Tokyo, Department of Complexity Science and Engineering, Kashiwa, Japan (GRID:grid.26999.3d) (ISNI:0000 0001 2151 536X) 
 Partner in the Trilateral Euregio Cluster (TEC), Laboratory for Plasma Physics, LPP-ERM/KMS, Brussels, Belgium (GRID:grid.26999.3d) 
 Culham Science Centre, United Kingdom Atomic Energy Authority, CCFE, Abingdon, United Kingdom (GRID:grid.417687.b) 
 Max-Planck-Institut für Plasmaphysik, Garching, Germany (GRID:grid.461804.f) (ISNI:0000 0004 0648 0340) 
 Università di Milano-Bicocca, Dipartimento di Fisica ‘G. Occhialini’, Milano, Italy (GRID:grid.7563.7) (ISNI:0000 0001 2174 1754); National Research Council, Institute for Plasma Science and Technology, Milan, Italy (GRID:grid.5326.2) (ISNI:0000 0001 1940 4177) 
 Culham Science Centre, United Kingdom Atomic Energy Authority, CCFE, Abingdon, United Kingdom (GRID:grid.417687.b); Jožef Stefan Institute, Ljubljana, Slovenia (GRID:grid.11375.31) (ISNI:0000 0001 0706 0012) 
 Naka Fusion Institute, National Institutes for Quantum Science and Technology (QST), Naka, Japan (GRID:grid.11375.31) 
 Rokkasho Fusion Institute, Rokkasho, National Institutes for Quantum Science and Technology (QST), Aomori, Japan (GRID:grid.11375.31) 
10  CEA, IRFM, Saint-Paul-lez-Durance, France (GRID:grid.457341.0) 
11  Naka Fusion Institute, National Institutes for Quantum Science and Technology (QST), Naka, Japan (GRID:grid.457341.0) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2686426488
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.