It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This research proposes an artificial intelligence (AI) detection model using convolutional neural networks (CNN) to automatically detect gas leaks in a long-distance pipeline. The change of gap pressure is collected when leakage occurs in the pipeline, and thereby the feature of gas leakage is extracted for building the CNN model. The gas leak patterns in the long-distance pipeline are analyzed. A pipeline detection model based on AI technology for automatically monitoring the leaks is proposed by extracting the feature of gas leakage. This model is tested by collecting gas pressure data from an existing natural gas pipeline system starting from Mailiao to Taoyuan in Taiwan. The testing result shows that the reduced model of leak detection can be used to detect the leaks from the upstream and downstream pipelines, and the AI-based pipeline leak detection system can obtain a satisfactory result.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer