Abstract

In this paper, we consider the composition of ordinary and exponential generating functions. The obtained property of the composition of ordinary and exponential generating functions can be used for distinguishing prime numbers from composite numbers. For example, it can be applied for constructing new probabilistic primality criteria. Using the obtain property, we get several congruence relations for the Uppuluri-Carpenter, Euler, and Fubini numbers.

Details

Title
Properties of a Composition of Exponential and Ordinary Generating Functions
Author
Kruchinin, Dmitry V; Shablya, Yuriy V; Kruchinin, Vladimir V; Shelupanov, Alexander A
Pages
705-711
Section
Research Article
Publication year
2018
Publication date
2018
Publisher
RGN Publications
ISSN
09765905
e-ISSN
09758607
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2689174673
Copyright
© 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.