Abstract

Strain relaxation mechanisms during epitaxial growth of core-shell nanostructures play a key role in determining their morphologies, crystal structure and properties. To unveil those mechanisms, we perform atomic-scale aberration-corrected scanning transmission electron microscopy studies on planar core-shell ZnSe@ZnTe nanowires on α-Al2O3 substrates. The core morphology affects the shell structure involving plane bending and the formation of low-angle polar boundaries. The origin of this phenomenon and its consequences on the electronic band structure are discussed. We further use monochromated valence electron energy-loss spectroscopy to obtain spatially resolved band-gap maps of the heterostructure with sub-nanometer spatial resolution. A decrease in band-gap energy at highly strained core-shell interfacial regions is found, along with a switch from direct to indirect band-gap. These findings represent an advance in the sub-nanometer-scale understanding of the interplay between structure and electronic properties associated with highly mismatched semiconductor heterostructures, especially with those related to the planar growth of heterostructured nanowire networks.

Planar growth of nanowire arrays involves interactions between materials that affect the electronic behavior of the effective heterojunction. Here, authors show how core curvature and cross-section morphology affect shell growth, demonstrating how strain at the core-shell interface induces electronic band modulations in ZnSe@ZnTe nanowires.

Details

Title
Sub-nanometer mapping of strain-induced band structure variations in planar nanowire core-shell heterostructures
Author
Martí-Sánchez, Sara 1 ; Botifoll, Marc 1 ; Oksenberg, Eitan 2   VIAFID ORCID Logo  ; Koch, Christian 1 ; Borja, Carla 1 ; Spadaro, Maria Chiara 1   VIAFID ORCID Logo  ; Di Giulio, Valerio 3   VIAFID ORCID Logo  ; Ramasse, Quentin 4   VIAFID ORCID Logo  ; García de Abajo, F. Javier 5 ; Joselevich, Ernesto 2   VIAFID ORCID Logo  ; Arbiol, Jordi 6   VIAFID ORCID Logo 

 Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Spain (GRID:grid.424584.b) (ISNI:0000 0004 6475 7328) 
 Weizmann Institute of Science, Department of Molecular Chemistry and Materials Science, Rehovot, Israel (GRID:grid.13992.30) (ISNI:0000 0004 0604 7563) 
 The Barcelona Institute of Science and Technology, ICFO-Institut de Ciencies Fotoniques, Barcelona, Spain (GRID:grid.473715.3) (ISNI:0000 0004 6475 7299) 
 SuperSTEM Laboratory, STFC Daresbury Campus, Daresbury, UK (GRID:grid.501168.b); University of Leeds, School of Chemical and Process Engineering & School of Physics and Astronomy, Leeds, UK (GRID:grid.9909.9) (ISNI:0000 0004 1936 8403) 
 The Barcelona Institute of Science and Technology, ICFO-Institut de Ciencies Fotoniques, Barcelona, Spain (GRID:grid.473715.3) (ISNI:0000 0004 6475 7299); ICREA, Passeig Lluís Companys 23, Barcelona, Spain (GRID:grid.425902.8) (ISNI:0000 0000 9601 989X) 
 Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Spain (GRID:grid.424584.b) (ISNI:0000 0004 6475 7328); ICREA, Passeig Lluís Companys 23, Barcelona, Spain (GRID:grid.425902.8) (ISNI:0000 0000 9601 989X) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2689410048
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.