It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Understanding the responses of rare species to altered fire disturbance regimes is an ongoing challenge for ecologists. We asked: are there associations between fire regimes and plant rarity across different vegetation communities? We combined 62 years of fire history records with vegetation surveys of 86 sites across three different dry sclerophyll vegetation communities in Booderee National Park, south-east Australia to: (1) compare associations between species richness and rare species richness with fire regimes, (2) test whether fire regimes influence the proportion of rare species present in an assemblage, and (3) examine whether rare species are associated with particular fire response traits and life history. We also sought to determine if different rarity categorisations influence the associations between fire regimes and plant rarity. We categorised plant rarity using three standard definitions; species' abundance, species' distribution, and Rabinowitz's measure of rarity, which considers a species' abundance, distribution and habitat specificity. We found that total species richness was negatively associated with short fire intervals but positively associated with time since fire and fire frequency in woodland communities. Total species richness was also positively associated with short fire intervals in forest communities. However, rare species richness was not associated with fire when categorised via abundance or distribution. Using Rabinowitz's measure of rarity, the proportion of rare species present was negatively associated with fire frequency in forest communities but positively associated with fire frequency in woodland communities. We found that rare species classified by all three measures of rarity exhibited no difference in fire response traits and serotiny compared to species not classified as rare. Rare species based on abundance differed to species not classified as rare across each life history category, while species rare by distribution differed in preferences for seed storage location. Our findings suggest that species categorised as rare by Rabinowitz's definition of rarity are the most sensitive to the effects of fire regimes. Nevertheless, the paucity of responses observed between rare species with fire regimes in a fire-prone ecosystem suggests that other biotic drivers may play a greater role in influencing the rarity of a species in this system.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 The Australian National University, Threatened Species Recovery Hub, Fenner School of Environment and Society, Canberra, Australia (GRID:grid.1001.0) (ISNI:0000 0001 2180 7477)
2 The Australian National University, Fenner School of Environment and Society, Canberra, Australia (GRID:grid.1001.0) (ISNI:0000 0001 2180 7477)