Abstract

Malignant melanoma is a life-threatening form of skin cancer with a low response rate to single-agent chemotherapy. Although combined therapies of metformin (MET) and doxorubicin (DOX) are effective in treating a variety of cancers, including breast cancer, their different physicochemical properties and administration routines reduce the effective co-accumulation of both drugs in tumors. Nanoparticles (NPs) have been demonstrated to potentially improve drug delivery efficiency in cancer therapy of, for example, liver and lung cancers. Hence, in this study, we prepared pH-sensitive, biocompatible, tumor-targeting NPs based on the conjugation of biomaterials, including sodium alginate, cholesterol, and folic acid (FCA). As expected, since cholesterol and folic acid are two essentials, but insufficient, substrates for melanoma growth, we observed that the FCA NPs specifically and highly effectively accumulated in xenograft melanoma tumors. Taking advantage of the FCA NP system, we successfully co-delivered a combination of MET and DOX into melanoma tumors to trigger pyroptosis, apoptosis, and necroptosis (PANoptosis) of the melanoma cells, thus blocking melanoma progression. Combined, the establishment of such an FCA NP system provides a promising vector for effective drug delivery into melanoma and increases the possibility and efficiency of drug combinations for cancer treatment.

Details

Title
Self-assembled polymeric nanocarrier-mediated co-delivery of metformin and doxorubicin for melanoma therapy
Author
Song, Mingming 1 ; Xia, Wentao 1 ; Tao, Zixuan 1 ; Zhu, Bin 1 ; Zhang, Wenxiang 1 ; Liu, Chang 1 ; Chen, Siyu 1 

 State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, China 
Pages
594-606
Publication year
2021
Publication date
Dec 2021
Publisher
Taylor & Francis Ltd.
ISSN
10717544
e-ISSN
15210464
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2691141877
Copyright
© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.