Abstract

Pyruvate kinase M2 (PKM2) plays an important role in the metabolism and proliferation of leukemia cells. Here, we show that deubiquitinase JOSD2, a novel tumor suppressor, blocks PKM2 nuclear localization by reducing its K433 acetylation in acute myeloid leukemia (AML). Firstly, we show that JOSD2 is significantly down-regulated in primary AML cells. Reconstitute of JOSD2 in AML cells significantly inhibit cell viability and induce cell apoptosis. Next, PKM2 is identified as a novel interaction protein of JOSD2 by mass spectrometry, co- immunoprecipitation and co-immunofluorescence in HL60 cells. However, JOSD2 does not affect PKM2 protein stability. We then found out that JOSD2 inhibits nuclear localization of PKM2 by reducing its K433 acetylation modification, accompanied by decreased downstream gene expression through non-glycolytic functions. Finally, JOSD2 decreases AML progression in vivo. Taken together, we propose that JOSD2 blocks PKM2 nuclear localization and reduces AML progression.

Details

Title
JOSD2 regulates PKM2 nuclear translocation and reduces acute myeloid leukemia progression
Author
Hu, Lei; Yang, Li; Wang, Yingying; Zou, Zhihui; Liu, Meng; Xu, Hanzhang; Wu, Yingli
Pages
1-4
Section
Correspondence
Publication year
2022
Publication date
2022
Publisher
BioMed Central
e-ISSN
21623619
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2691596117
Copyright
© 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.