Full text

Turn on search term navigation

© 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The impact of aerosol fluorescence on the measurement of water vapor by UV (355 nm emission) Raman lidar in the upper troposphere and lower stratosphere (UTLS) is investigated using the long-term records of three high-performance Raman lidars contributing to the Network for the Detection of Atmospheric Composition Change (NDACC). Comparisons with co-located radiosondes and aerosol backscatter profiles indicate that laser-induced aerosol fluorescence in smoke layers injected into the stratosphere by pyrocumulus events can introduce very large and chronic wet biases above 15 km, thus impacting on the ability of these systems to accurately estimate long-term water vapor trends in the UTLS.

In order to mitigate the fluorescence contamination, a correction method based on the addition of an aerosol fluorescence channel was developed and tested on the water vapor Raman lidar TMWAL located at the JPL Table Mountain Facility in California. The results of this experiment, conducted between 27 August and 4 November 2021 and involving 22 co-located lidar and radiosonde profiles, suggest that the proposed correction method is able to effectively reduce the fluorescence-induced wet bias. After correction, the average difference between the lidar and co-located radiosonde water vapor measurements was reduced to 5 %, consistent with the difference observed during periods of negligible aerosol fluorescence interference.

The present results provide confidence that after a correction is applied, long-term water vapor trends can be reasonably well estimated in the upper troposphere, but they also call for further refinements or use of alternate Raman lidar approaches (e.g., 308 nm or 532 nm emission) to confidently detect long-term trends in the lower stratosphere. These findings may have important implications for NDACC's water vapor measurement strategy in the years to come.

Details

Title
The impact of aerosol fluorescence on long-term water vapor monitoring by Raman lidar and evaluation of a potential correction method
Author
Chouza, Fernando 1   VIAFID ORCID Logo  ; Leblanc, Thierry 1 ; Brewer, Mark 1 ; Wang, Patrick 1 ; Martucci, Giovanni 2 ; Haefele, Alexander 2   VIAFID ORCID Logo  ; Vérèmes, Hélène 3   VIAFID ORCID Logo  ; Duflot, Valentin 3 ; Payen, Guillaume 4 ; Keckhut, Philippe 5 

 Laboratory Studies and Atmospheric Observations, Jet Propulsion Laboratory, California Institute of Technology, 92397 Wrightwood, USA 
 Federal Office of Meteorology and Climatology, MeteoSwiss, 1530 Payerne, Switzerland 
 Laboratoire de l'Atmosphère et des Cyclones (LACy, UMR 8105 CNRS, Université de la Réunion, Météo-France), Université de La Réunion, 97400 Saint-Denis de La Réunion, France 
 Observatoire des Sciences de l'Univers de La Réunion (OSU-Réunion), UAR 3365, Université de la Réunion, CNRS, Météo-France, 97400 Saint-Denis de La Réunion, France 
 LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, 75000 Paris, France 
Pages
4241-4256
Publication year
2022
Publication date
2022
Publisher
Copernicus GmbH
ISSN
18671381
e-ISSN
18678548
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2692565355
Copyright
© 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.