It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Understanding the human water footprint and its impact on the hydrological cycle is essential to inform water management under climate change. Despite efforts in estimating irrigation water withdrawals in earth system models, uncertainties and discrepancies exist within and across modeling systems conditioned by model structure, irrigation parameterization, and the choice of input datasets. Achieving model reliability could be much more challenging for data-sparse regions, given limited access to ground truth for parameterization and validation. Here, we demonstrate the potential of utilizing remotely sensed vegetation and soil moisture observations in constraining irrigation estimation in the Noah-MP land surface model. Results indicate that the two constraints together can effectively reduce model sensitivity to the choice of irrigation parameterization by 7%–43%. It also improves the characterization of the spatial patterns of irrigation and its impact on evapotranspiration and surface soil moisture by correcting for vegetation conditions and irrigation timing. This study highlights the importance of utilizing remotely sensed soil moisture and vegetation measurements in detecting irrigation signals and correcting for vegetation growth. Integrating the two remote sensing datasets into the model provides an effective and less feature engineered approach to constraining the uncertainty of irrigation modeling. Such strategies can be potentially transferred to other modeling systems and applied to regions across the globe.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Department of Earth and Planetary Sciences, Johns Hopkins University , Baltimore, MD, United States of America
2 Hydrological Science Laboratory, NASA Goddard Space Flight Center , Greenbelt, MD, United States of America
3 Hydrological Science Laboratory, NASA Goddard Space Flight Center , Greenbelt, MD, United States of America; Science Systems and Applications Inc. , Lanham, MD, United States of America
4 Applied Research Associates Inc. , Raleigh, NC, United States of America