1. Introduction
Cancer is the second leading cause of death around the world [1]. In men, cancer most often affects the lung, prostate, and colorectum, while, in women, it affects the lung, breast, and colorectum [1]. In children, the most common types are blood cancer and cancers related to the brain and lymph nodes [1]. Cancer is a disease characterized by the formation of tumors in bone, skin, tissue, organs, and glands due to an increase in cell growth, as well as the invasion of other tissues [2]. Cancer is a highly heterogeneous disease with different histological and biological characteristics defined by genetic, epigenetic, and transcriptomic features, which determine clinical and treatment outcomes [3]. Most lung cancer cases (85%) are related to the histological type known as non-small cell cancer (NSCLC), followed by small cell carcinoma (SCLC) (15%). The three main subtypes of NSCLC are adenocarcinoma, squamous-cell carcinoma, and large-cell carcinoma [4]. The WHO has classified breast cancer in 20 major types and 18 minor subtypes according to the histopathology: carcinoma in situ (15–30%), invasive carcinoma (70–85%) (invasive ductal carcinoma and invasive lobular carcinoma), and mesenchymal tumors (including sarcoma); the grade (well differentiated (low-grade), moderately differentiated (intermediate-grade), and poorly differentiated (high-grade); and stage (primary tumor, regional lymph nodes, and distant metastases) [5]. Breast cancer also has specific molecular characteristics, such as the activation of human epidermal growth factor receptor 2 (HER2), the activation of hormone receptors, such as estrogen and progesterone, and BRCA mutations [6]. Leukemia is a group of blood cancers that usually begin in the bone marrow and have been classified in four major subtypes (acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), and chronic myeloid leukemia (CML)) [7].
The high mortality rates of cancer have been associated with the lack of an early diagnosis based on specific biomarkers able to detect the potential to develop a tumorigenic process in the lung and to develop specific treatments against the disease [2]. The search of key cancer biomarkers is essential for early diagnosis and prognosis, classifying sensitive patients, and predicting the treatment response of every patient [8]. Cancer research has identified a significant number of predictive biomarkers related to the response to a certain treatment for NSCLC patients [9,10]. The identification of genetic risk factors that increase the susceptibility to develop lung cancer is important to develop specific treatments [11]. However, there is still an important limitation in this approach because it treats only a few patients with the associated risk factor, and, therefore, the mortality rate has not shown significant reductions [12].
The dysregulation of gene expression in human cells is under study in many laboratories around the world in the context of different studies of diseases. Currently, transcriptomic analysis combined with large sample sizes have the potential to lead to significant advances in understanding the genetic and regulatory architecture of very complex diseases with risks contributed by multiple gene expression dysregulation. The complex interaction between genes and environment (GXE) is deeply involved in multiple aspects of cancer, from determining an individual’s vulnerability to onset to influencing its response to therapeutic intervention [13]. Consequently, at the molecular level, the ability of a cell to communicate with its environment is essential for guaranteeing the proper molecular functions in human cells and to promote important changes in cell growth, proliferation, differentiation, survival, and death through the activation or repression of a group of genes called immediate early genes (IEGs) [14]. The key components of the GXE interaction are the IEGs, which are known as the “gateway to the genomic response” since IEGs are the first to be activated at the transcription level in response to a wide variety of cellular stimuli from extracellular signals. The main IEG products are early regulators of cell growth and differentiation signals, which essentially are transcription factors (TFs), along with other DNA-binding proteins, cytoskeletal proteins, and receptor subunits [14]. The TFs regulate gene expression by binding to cis-acting DNA regulatory elements, including enhancers, insulators, and promoters of genes, in order to activate or inhibit their transcription [15]. The TFs can be classified into 71 families based on the homology of their DNA-binding domains, but three of them contain more than 50% of the total TFs. The C2H2 zinc finger family has over 600 members, the homeobox family over 200 members, and the bHLH family over 80 members [16]. TFs control expression in a specific spatial, temporal, and sequential manner during development and tissues differentiation; therefore, changes in their expression can lead to the master dysregulation of cell integrity and homeostasis, and, in this way, to the development of complex pathologies [17]. TFs are commonly deregulated in the major class of cancer cells, making them very interesting targets for cancer therapy [18]. The first step, then, is to identify the most important TFs as key biomarkers to be able to study their biological function in normal and cancer contexts in order to move forward in the translational cancer research field.
Our research laboratory has proposed a new methodology based on the identification of common and unique deregulated genes and TFs in cancer, along with the creation of coexpression networks with microarray datasets, using “Coexnet” [19], an R library developed by our research group, to study the complexity of lung cancer and the identification of biomarkers associated with biological processes and signaling pathways related to the acquisition of the hallmarks of cancer during the establishment and progression of the disease [20]. Our bioinformatic pipeline seeks to address the complexity of the disease in terms of the intertumoral and intratumoral variability in each individual and/or population of individuals, as well as the large number of deregulated genes that have been identified with genomic studies, conducting a joint transcriptomic analysis of lung cancer with microarray data, identifying the signaling pathways related to specific diagnosis gene groups in coexpression networks associated with tumorigenesis, which could become good targets for the development of lung cancer drug-oriented treatments. We have already used this bioinformatic pipeline to identify transcription factors that could be related to the establishment and progression of lung cancer, comparing gene expression studies of lung cancer and other lung diseases, and creating coexpression networks of deregulated genes and transcription factors, which are related to the acquisition of the hallmarks of cancer [20]. Now, we want to extend our joint transcriptomic analysis to other types of cancer to identify important biomarkers that are coexpressed in tumorigenic processes in the lung and other tissues affected with the disease, which could become important targets for the development of diagnostic and treatment techniques against cancer and lung cancer.
2. Materials and Methods
Twenty sets of expression datasets (microarrays) were selected from the public repositories Gene Expression Omnibus (GEO) from NCBI and Array Express from EBI (Table 1). Ten sets compare tumor tissue from patients with lung cancer and normal lung tissue, five sets compare tumor tissue from patients with breast cancer and normal breast tissue, and five sets compare blood tissue of leukemia patients and normal blood tissue of individuals not affected with the disease. The selected datasets passed the same bioinformatic pipeline developed for the analysis of our previous transcriptomic studies [20]. The process started with all microarray data preprocessing (quality verification, filter, and normalization) [21] to select the best microarray datasets for the analysis, and then we conducted the detection of differentially expressed genes (DEGs) [22] with R language and specialized libraries [19].
The list of all deregulated genes in lung cancer (LC), breast cancer (BC), and leukemia were compared to identify those varying in the same sense (upregulated or downregulated in the pathology with respect to healthy tissue) in the majority of microarray datasets (at least eight of the ten sets of lung cancer and in at least one of the other types of cancer) to establish our “Common winning DEGs” and in the majority of LC microarray datasets (at least seven of the ten sets of lung cancer and none of the other types of cancer) to establish our “Unique LC winning DEGs”. These were highlighted in the functional and enrichment analysis, classifying those involved in tumorigenic processes with the online DAVID tool (Bioinformatics Resources 6.8, NIAID/NIH” (
The coexpression networks of common winning DEGs of cancer (LC&OC and unique lung-cancer-related winning DEGs (LCII) and all transcription factors capable to regulate them according to oPOSSUM database (
The coregulatory networks of winning TFs were completed with R library “Coregnet’’ [49] in a selected dataset of lung cancer (GSE19804), breast cancer (GSE3744), and leukemia (GSE6691), where all the winning TFs were deregulated. The Kaplan–Meier estimator (
3. Results
3.1. Differentially Expressed Genes (DEGs) Common between the 3 Types of Cancer, and Unique Lung Cancer DEGs
In general, there are more DEGs in lung cancer than in other types of cancer, and there is great variability in overregulated and downregulated genes in every type of cancer (Figure 1) (Supplementary Table S1). The identification of 296 genes that were equally differentially expressed in lung cancer and other lung diseases, and 98 genes equally deregulated only in lung cancer, indicated that the transcriptomic analysis of microarray datasets allows us to find a characteristic metafirm of the tumorigenic process at the molecular level. One-hundred-forty common DEGs are downregulated and one-hundred-fifty-six overregulated in at least eight of the ten lung cancer datasets analyzed and at least one set of other types of cancer (Supplementary Table S1). Fifty-nine common DEGs are downregulated in the three types of cancer (LC&BC&LK), seventy-nine in lung cancer and breast cancer (LC&BC), and eleven in lung cancer and leukemia (LC&LK). Seventy-eight common DEGs are overregulated in the three types of cancer (LC&BC&LK), seventy-four in lung cancer and breast cancer (LC&BC), and eleven in lung cancer and leukemia (LC&LK). The ninety-eight LC winning DEGs are deregulated in at least seven of the ten sets of lung cancer, of which fifty-seven are downregulated and forty-one overregulated (Supplementary Table S2).
Among the winning DEGs, there are twenty-five winning TFs common between the different types of cancer and six winning TFs unique to lung cancer (Table 2). There are thirteen deregulated winning TFs in common among the three types of cancer studied (Figure 2), nine deregulated winning TFs in common between lung cancer and breast cancer (Figure 3), and six deregulated winning TFs in common between lung cancer and leukemia (Figure 4). Additionally, there are six deregulated unique LC winning TFs (Figure 5).
3.2. Functional Annotation and Enrichment Analysis
The functional annotation analysis of the 140 negatively regulated winning DEGs showed that they are associated with angiogenesis, vasculogenesis, and cell adhesion processes (Figure 6A); meanwhile, the 156 upregulated winning DEGs are associated with cell division, cell proliferation, DNA replication, and repair (Figure 6B). Likewise, 71 overregulated winning associated DEGs (p-value: 1.70 × 10−12) were identified (Supplementary Table S1). The enrichment and functional annotation analysis of the 98 unique negatively and positively regulated winning DEGs of lung cancer did not yield significant associations with cancer, biological processes, or signaling pathways (Supplementary Table S2).
According to DAVID’s analysis, sixteen winning TFs (DLX5, EGR1, FOXF1, FOXM1, GATA6, ID2, KLF2, KLF4, RARA, RORA, SOX17, SOX4, TAL1, TBX5, TCF3, and ZBTB16) are related to the positive regulation of transcription (p-value: 3.1 × 10−11), and eight winning TFs (FOXM1, GATA6, ID2, ID4, KLF4, PAX9, RARA, and ZBTB16) are related to the negative regulation of transcription (p-value: 4.6 × 10−3). Five winning TFs (EPAS1, MEIS1, RORA, SOX17, and TAL1) are related to angiogenesis (p-value: 3.9 × 10−2). Five winning TFs (KLF4, RARA, SOX4, TBX5, and ZBTB16) are associated with the negative regulation of cell proliferation (p-value: 1.7 × 10−1). Four winning TFs (FOXM1, MEIS1, RARA, and SOX4) are related to the positive regulation of cell proliferation (p-value: 5.8 × 10−1). Three winning TFs (FOXF1, KLF4, and RORA) are related to negative regulation of inflammatory response (p-value: 3.0 × 10−1). Seven winning TFs (ETV4, ID2, MEIS1, NR4A3, RARA, TCF3, and ZBTB16) are related to transcriptional misregulation in cancer (p-value: 6.9 × 10−5). Additionally, six winning TFs (DLX5, ID2, ID4, KLF4, MEIS1, and TCF3) are related to signaling pathways regulating pluripotency of stem cells (p-value: 1.6 × 10−4).
3.3. Coexpression Network Analysis
The LC&OC coexpression network was created with the 71 DEGs in common between lung cancer and other types of cancer, which are associated with cancer according to the DAVID enrichment and functional annotation analysis, along with the 45 TFs identified by oPOSSUM as possible regulators of these DEGs, showing that 32 common winning DEGs are coexpressed with one TF (MYBL2) in lung cancer (Figure 7). MYBL2 is positively regulated in eight datasets of lung cancer and in two datasets of breast cancer (Table 2). Fourteen DEGs of the LC&OC coexpression network are also in the LC&LD coexpression network (the DEGs network that might be related to cancer establishment as those DEGs are also deregulated in other lung diseases), and ten DEGs are in the LCI coexpression network (the DEGs network that might be related to cancer progression as those DEGs are not deregulated in other lung diseases) [51]. Moreover, seven DEGs (AURKA, BUB1, CDC6, MAD2L1, NDC80, ZWINT, and TIMELESS) are unique to the LC&OC coexpression network (Figure 7). According to DAVID´s analysis, these seven DEGS are related to cell division (p-value: 5. 1 × 10−9).
The functional annotation analysis of the genes in the LC&OC coexpression network showed statistically significant associations to cancer (p-value: 5.2 × 10−19) and to the same biological processes and the same signaling pathways of positively regulated genes in common between lung cancer and other lung diseases, with significant p values (Supplementary Table S1). Most of the genes in the LC&OC coexpression network are associated with seven of the ten hallmarks of cancer (Figure 8). Most of the genes in the LC&OC coexpression network have evidence of their deregulation in lung cancer (Supplementary Table S3). Three DEGs (ASPM, CENPF, and RFC4) have no evidence of their association with the acquisition of lung cancer characteristics, and only one of them has evidence of deregulation in lung cancer (Supplementary Table S3). MYBL2 has been associated with genomic instability processes and the maintenance of proliferative signaling [52].
The list of the DEGs unique to lung cancer was used to make the LCII coexpression network as we could not have a list of genes related to cancer according to DAVID analysis (Supplementary Table S2), along with the 90 TFs identified by oPOSSUM as possible regulators of these DEGs. The analysis identified 53 DEGs that are coexpressed with 13 TFs in lung cancer (Figure 9). Three TFs (E2F1, NR4A2, and ZEB1) also appeared in the LC&LD coexpression network and in the LCI coexpression network, and two TFs (RUNX1 and EBF1) in the LCI coexpression network [20,51]. The other eight TFs are new and unique to the LCII coexpression network. FOXF1 is negatively regulated in eight sets of lung cancer data and in the PAH set. GATA6 is negatively regulated in seven sets of lung cancer data and in the PAH set. FOXF2 is negatively regulated in six sets of lung cancer data and in the PAH set, and positively regulated in a leukemia dataset. HOXA5 is negatively regulated in six sets of lung cancer data, in two of breast cancer, and in the PAH set. MEF2A is negatively regulated in four sets of lung cancer and in the PAH set, and positively regulated in one set of breast cancer and in two of leukemia. NFE2L2 is positively regulated in two sets of lung cancer data, one set of leukemia, and in the PAH set, and negatively regulated in three sets of lung cancer, two of breast cancer, and in one of leukemia [20]. NFIL3 is negatively regulated in four sets of lung cancer and two sets of leukemia. PBX1 is negatively regulated in two sets of lung cancer and two sets of leukemia, and positively regulated in a set of breast cancer.
Half of the genes in the LCII coexpression network have experimental evidence of their association with seven of the ten hallmarks of cancer (Figure 10). In the LCII coexpression network, 18 DEGs (ABCA3, ALDH3B1, C1QTNF7, CBLC, CYP27A1, DES, FANCG, FR, FLRT3, MD4A, IGSF10, KCNT2, MAMDC2, MND1, PDE5A, RSPO1, SLC6A4, TM6SF1, and W6DC) have evidence of their deregulation in lung cancer but have not yet been associated with the acquisition of any hallmark of cancer (Supplementary Table S4). The expression of four DEGs (C2orf40, NOSTRIN, NFX3, and TRPV2) has been associated with normal lung function, but they have no experimental evidence of their deregulation in cancer, or of their association with the acquisition of the hallmarks of cancer. Five DEGs (ABCA9, FAR2, GRASP, RPGR, and SGCA) have no evidence of their deregulation in lung cancer, nor any experimental evidence of their association with the acquisition of the hallmarks of cancer. NFIL3, a TF, also has no evidence of its deregulation in lung cancer, nor any experimental evidence of its association with the acquisition of the hallmarks of cancer (Supplementary Table S4).
The comparison of lung cancer (LC) and breast cancer (BC) coexpression networks with Gedevo identified five statistically significant alignments (Median > 0.5), appearing in at least 6.3% of all possible alignments (Table 3). The genes associated with the LC-BC alignments are new genes; none had appeared in any of the previous coexpression analyses. Four of the five genes (HEG1, PLSCR4, GMFG, and NME4) associated with LC-BC alignments have been observed to be deregulated in lung cancer. ReactomeFIViz enrichment analysis in Cytoscape showed that two genes (HEG1 and PLSCR4) have evidence of their association with the acquisition of cancer characteristics.
The comparison of lung cancer (LC) and leukemia (LK) coexpression networks with Gedevo identified seven statistically significant alignments (Median>0.5), appearing in at least 7.5% of all possible alignments (Table 4). Six of the genes associated with the LC-LK alignments are new genes; only one (BIRC5) appears in the LC&LD coexpression network. Five of the seven genes (BIRC5, GIMAP5, HBB, IL33, and AKAP12) associated with the LC-LK alignments have been observed to be deregulated in lung cancer. ReactomeFIViz enrichment analysis in Cytoscape showed that four genes (SNRK, BIRC5, HBB, and IL33) have evidence of their association with the acquisition of cancer characteristics.
The Coexnet library found some CCPs in some comparisons of lung cancer (LC) and other types of cancer (OC), the majority made of two or three nodes (Supplementary Table S5). The GSE10072 lung cancer set formed the largest CCPs with two breast cancer (BC) sets; the GSE3744 set formed a six-node CCP, and the GSE21422 set formed a 12-node CCP and a six-node CCP. A total of 44 nodes were found in the different CCPs identified by Coexnet when comparing the coexpression networks of LC and BC. The analysis of the nodes of the LC-BC CCPs with iRegulon showed SOX15 as a regulator of 26 of the 44 nodes with an enrichment score of 4712 and 13 possible binding motifs. SOX15 is positively regulated in four sets of lung cancer and in one of leukemia, and negatively regulated in a set of breast cancer. ReactomeFIViz enrichment analysis in Cytoscape showed an association of seven (EDNRB, CDKN2A, VEGFD, FOS, GNG11, TGFBR2, and BIRC5) of the forty-four nodes of the LC-BC CCPs with signaling pathways related with the acquisition of tumor characteristics.
The GSE10072 lung cancer set formed the majority of CCPs with four sets of leukemia (LK), with two or three nodes in total each. A total of twelve nodes appeared in the different CCPs identified by Coexnet when comparing the coexpression networks of lung cancer (LC) and leukemia (LK). The analysis of the nodes with iRegulon showed HLF, a TF with the ability to regulate four nodes, has an enrichment score of 6000, has six possible binding motifs, and is negatively regulated in eight sets of lung cancer data. ReactomeFIViz enrichment analysis in Cytoscape showed an association of two nodes (CAV1 and TNF) with the TNF receptor signaling pathway, and another two nodes (FOSB and TNF) with the IL−7 signaling pathway.
3.4. Coregulatory Network Analysis
According to Coregnet´s analysis, in lung cancer, 21 winning TFs (ZBTB16, ID2, ID4, EPAS1, EGR1, FOSB, HLF, FOXF1, GATA6, GPRASP1, KLF2, MEIS1, MNDA, NR4A3, TAL1, RFX2, RORA, SOX17, PKNOX2, NR2F1, and KLF4) can form a coregulatory network, and nine winning TFs (MYBL2, FOXM1, HOXC6, BZW2, TCF3, SOX4, ETV4, SOX12, and TFAP2C) can form another coregulatory network. In breast cancer, eight winning TFs (ZBTB16, KLF2, KLF4, NR2F1, EGR1, FOSB, EPAS1, and GPRASP1) can form a coregulatory network, and three other winning TFs (MYBL2, FOXM1, and TAL1) can form another coregulatory network. In leukemia, there is no evidence that the winning TFs have the ability to form any coregulatory complex.
3.5. Survival Analysis of Top Winning Transcription Factors in Lung Cancer
The KM plotter analysis for the top winning TFs showed a statistically significant association between the expression levels of ZBTB16, TAL1, FOXM1, SOX17, EPAS1, KLF2, ID4, MYBL2, NR4A2, FOXF1, GATA6, HOXC6, and RFX2 with the survival of lung cancer patients (Figure 11).
4. Discussion
The search for transcription factors as general and specific tumor biomarkers of lung cancer began with the selection of an important number of comparable datasets, from which we could identify and establish the most complete transcriptome metafirm possible of the tumor process independent of tissue and specifically in the lung (Figure 12), taking into account different populations and all possible types and subtypes of cancer, in order to select the most accurate list of common deregulated genes in leukemia, lung, and breast cancer, and an important number of lung cancer studies to identify those unique deregulated genes. We have chosen epidemiologically important cancer types in two of our population groups (breast cancer in women and leukemia in children), as well as one type of cancer with an embryonic origin close to the lung (breast cancer) and a type with a different embryonic origin (leukemia). Therefore, we could expect to have a greater number of genes in common with the type of cancer with a closer embryonic origin if there is some relationship between the transcriptional regulatory processes during embryonic and tumor stages in different tissue types, as well as to have a bigger picture of the general tumoral processes with different embryonic origins. Indeed, we found a greater number of DEGs (Supplementary Table S1) and winning TFs (Table 2) between lung cancer and breast cancer compared to lung cancer and leukemia. Therefore, it was also possible to identify unique and common genes regardless of the great heterogeneity of tumor diseases in terms of cell or tissue type, and different types and subtypes of cancer.
When comparing the three types of cancer, we found thirteen TFs within at least ten datasets (Table 2). The top four winning TFs are ZBTB16, TAL1, KLF4, and FOXM1. ZBTB16 (zinc finger and BTB domain containing 16) is a TF involved in key developmental processes, self-renewal, and differentiation of stem cells. ZBTB16 is downregulated in lung cancer, breast cancer, and leukemia, is the first winning TF of the three types of cancer, and, therefore, is a potential general tumor biomarker. ZBTB16 is a member of the Krüppel C2H2-type zinc-finger protein family of TFs, which has been found to be upregulated in clear cell renal cell carcinoma, colon cancer, glioblastoma, testicular seminoma, and downregulated in hepatocellular carcinoma, lung cancer, melanoma, pancreatic cancer, prostate cancer, and thyroid carcinoma [53]. The downregulation of ZBTB16 in the cytoplasm of NSCLC lung cancer cells has been related to high tumor grade and tumor aggression [54]. In breast cancer, ZBTB16 is also downregulated by promoter hypermethylation, and, when activated, it can inhibit breast cancer cells’ proliferation and metastasis [55]. Therefore, ZBTB16 has shown tumor suppression activity in cancer.
TAL1 (T-cell acute lymphocytic leukemia protein 1) is a basic-helix-loop-helix (bHLH) TF [56], an essential regulator of normal hematopoiesis [57], and also a winning downregulated TF in three types of cancer. TAL1 is a hub node of a transcriptional regulatory network in lung adenocarcinoma, promoting the TGF-β signaling pathway [58]. KLF4 (Krüppel-like factor 4) is a zinc finger-type TF important during development, differentiation, and tissue homeostasis [59]. KLF4 is downregulated in colorectal carcinoma [60], and gastric epithelium [61], suggesting that it might be a tumor suppressor. FOXM1 (Forkhead box transcription factor) is related to cell cycle, cell differentiation and proliferation, DNA damage repair, tissue homeostasis, angiogenesis, apoptosis, and metastasis [62]. FOXM1 is highly expressed in several cancers, such as hepatocellular carcinomas [63], colon cancer [64], pancreatic cancer [65], gastric cancer [66], and breast cancer [67]. We have also identified FOXM1 as an important regulator during lung cancer progression since it is the TF that regulates a greater number of genes deregulated only in lung cancer, which are not deregulated in other lung diseases and are coexpressed in the common connectivity patterns formed between the gene networks of lung cancer datasets [20].
When comparing lung cancer and breast cancer, we found nine TFs within at least nine datasets (Table 2). The top four winning TFs are SOX17, EPAS1, KLF2, and ID4. SOX17 (SRY-box containing gene 17) is a member of the SRY-related high mobility group (HMG) box family of TFs, related to embryogenesis and the negative modulation of the WNT/β-catenin and TCF signaling pathway in lung cancer [68]. SOX17 is downregulated by promoter hypermethylation, contributing to the activation of the Wnt signaling pathway in breast cancer establishment and progression [69]. SOX17 is downregulated in lung and breast cancer, is the first winning TF of these two types of cancer, and is, therefore, a potential general tumor suppressor biomarker related to ectoderm origin [70]. EPAS1 (endothelial PAS domain-containing protein 1) is downregulated in NSCLC due to promoter methylation and sequence genetic polymorphisms [71,72], and specifically in lung adenocarcinoma [73]. EPAS1 is negatively regulated by miR−152–3p, which induces apoptosis of MCF−7/TAX cells [74]. KLF2 (Kruppel-like factor 2) binds to GC-enriched promoter regions of genes involved in apoptosis [75] and inhibition of angiogenesis [76], proliferation, and migration [77]. In NSCLC, KLF2 is downregulated and has a tumor suppressor function [78]. KLF2 is also downregulated in breast cancer, having a tumor suppressor activity that can control the transcriptional activity of vitamin A metabolite retinoic acid (RA), while its expression positively correlates with patients’ survival [79]. ID4 (inhibitor of DNA binding 4) is a tumor suppressor that inhibits epithelial–mesenchymal transition and metastasis [80] and induces apoptosis in lung adenocarcinoma through the activation of the p38 MAPK signaling pathway [81]. However, the expression of ID4 is negative in breast cancer, NSCLC, and its subtype datasets, but it is only positive in the SCLC dataset, which suggests a difference in expression levels according to the type of lung cancer. This may suggest that the function of this TF varies depending on the type of lung cancer, and, therefore, its function could be that of a tumor suppressor in NSCLC and that of an oncogene in SCLC.
When comparing lung cancer and leukemia, we found nine TFs within at least nine datasets (Table 2). The top two winning TFs are NR4A3 and ID2. NR4A3 (nuclear receptor subfamily 4, group A, member 3) is an early immediate gene considered a possible homeostatic regulator of proliferation, apoptosis and differentiation, and tumor suppressors in rapidly lethal acute myeloid leukemia (AML) [82]. NR4A3 acts as a tumor suppressor in lung and breast cancer, favoring the activation of programmed cell death programs [83]. ID2 (DNA binding protein inhibitor 2) is a helix-loop-helix TF that positively regulates cancer cells’ proliferation [84], migration, invasion [85], and cell cycle progression, and also negatively regulates cancer cells’ differentiation and apoptosis [86], as well as other tumor suppressor genes [87]. ID2 has a role in the dedifferentiation of NSCLC cells, suggesting that it can be used as a prognostic marker [88].
On the basis assumption that coexpression implies coregulation, the identification of TFs as hub genes in coexpression modules that are likely to be the regulators of gene coexpression can be made through a transcriptomic analysis in several cancer types and subtypes, which may share genetic components and expression patterns, to identify a gene coexpression and coregulatory metafirm of TFs that represent an architecture of general tumors and those specific to lung cancer [89]. The construction of a coexpression network with common deregulated winning DEGs between three types of cancer (LC&OC network) allowed the identification of the coexpressed DEGs and TFs that can be more important for the establishment and progression of any tumor pathology (Figure 7). The LC&OC network has 15 DEGs also coexpressed in the LC&LD network associated with the same hallmarks of cancer, suggesting that slightly more than half of the DEGs of the LC&LD network are associated with the establishment of tumor pathology specifically in the lung.
The seven DEGs (AURKA, BUB1, CDC6, MAD2L1, NDC80, ZWINT, and TIMELESS) coexpressed only in the LC&OC coexpression network have been associated with the acquisition of the hallmarks of cancer. AURKA is overexpressed in poorly differentiated lung cancer cells [90]. AURKA is positively regulated by KRAS, but, if it is negatively regulated, it is related with decreases in growth, viability, transformation, proliferation, and apoptosis [91]. CDC6 is negatively regulated by miR26a and miR26b, decreasing proliferation and metastasis of lung cancer cells [92]. CDC6 is regulated by E2F TFs [93,94]. CDC6 reduces levels of E-cadherin [95]. Ang-(1-7) inhibits CDC6, decreasing cell growth and EMT [96]. The Leu84Met SNP of MAD2L1 has an increased related risk to progress into lung cancer depending on the allele dose [97]. NEK2 is degraded after inhibition of its interaction with Hec1, leading to induction of chromosomal misalignment in metaphase and apoptosis [98]. The negative regulation of TIMELESS inhibits proliferation, growth, and induces apoptosis [99]. The negative regulation of ZWINT reduces proliferation, migration, invasion, and apoptosis [100].
In the LC&OC coexpression network, there are three DEGs (ASPM, CENPF, and RFC4) that have no evidence of their association with the acquisition of lung cancer characteristics, and only one of them has evidence of its deregulation in lung cancer (Supplementary Table S3). CENPF also appears in the LCI coexpression network and is one of the genes that has been deregulated in lung cancer but has not been associated with the acquisition of the hallmarks of cancer in this tissue. In the LC&OC network, eleven DEGs of the LCI network were also coexpressed, suggesting that most of the LC&OC network DEGs and MYBL2 are associated with the progression of tumor pathology. Since it has been suggested that other diseases may be the origin of tumor processes in the lung [101], therefore the deregulated genes in both lung cancer and lung diseases may be associated with the establishment of tumor pathology, while the genes deregulated only in lung cancer may be associated with the progress of cancer [20,51]. In general, MYBL2 has been expressed in proliferating cells [102], and its ability to maintain adequate proliferative signaling is considered necessary to maintain genomic stability [103]. However, MYBL2 has shown the ability to induce proliferation and cell cycle in lung adenocarcinoma [104]. Although the different types of cancer show the deregulation of a large number of common winning DEGs, there is only one TF coexpressed in the LC&OC network. Likewise, the LC&OC CCPs are very small compared to the previously identified LC&LD CCPs, and they show new associations not observed in the coexpression networks of cancer-associated winning DEGs, which might demonstrate the great specificity and complexity of cancer since it suggests that different TFs are involved with a large number of very different deregulated genes in the establishment and progression of tumor pathology in each tissue.
The LC-BC CCPs formed have no more than 12 nodes and identified only seven genes (EDNRB, CDKN2A, VEGFD, FOS, GNG11, TGFBR2, and BIRC5) compromised in signaling pathways associated with the acquisition of tumor characteristics. The LC-LK CCPs are made of two or three nodes maximum and identified four genes (SNRK, BIRC5, HBB, and IL33) associated with the acquisition of the hallmarks of cancer (Supplementary Table S5). BIRC5 is a gene identified in the analysis as a DEG associated with the establishment of cancer in the LC&LD and LC&OC networks, and its presence in the LC-BC and LC-LK CCPs suggests its importance in tumor process. The overexpression of BIRC5 can lead to cell cycle activation to promote the development of lung adenocarcinoma, while negative regulation can dramatically decrease invasion and metastasis capabilities, suppress proliferation, slow growth, induce vascular pulmonary apoptosis, and reverse pulmonary arterial hypertension [105]. The other seven genes (EDNRB, CDKN2A, VEGFD, GNG11, SNRK, HBB, and IL33) do not appear in the analysis of coexpression networks of winning DEGs; they are new genes with evidence of their association to the acquisition of the characteristics of cancer that must be studied to know its importance in tumor processes of different tissues (Supplementary Table S5).
The analysis of the LCII coexpression network allowed us to identify a significant number of unique lung cancer genes that are not deregulated in other types of cancer. Unique lung-cancer-winning DEGs that are coexpressed in the LCII network are new; they do not appear in the three coexpression networks of previous cancer-associated winning DEGs, suggesting their importance in the establishment and progression of cancer specifically in lung tissue (Figure 9). More than half of the DEGs of the LCII network should be studied experimentally because they do not have specific evidence of their deregulation in lung cancer, or their association with the acquisition of the hallmarks of cancer. The DEGs that have experimental evidence have been associated with invasion, metastasis, sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, and genomic instability, the same hallmarks associated with the three previous networks with the winning DEGs associated with cancer (Supplementary Table S4). The study of the other half of DEGs can strengthen the hallmarks already identified in the analysis, increasing the number of winning DEGs associated with each of them, and it can highlight the importance of other hallmarks of cancer during the establishment and progression of lung cancer.
The LCII coexpression network allowed to identify a group of TFs that further strengthened the TF regulation network identified with the transcriptomic and coexpression analysis of lung cancer and other lung diseases [20]. E2F1, NR4A2, and ZEB1 reappear coexpressed in the LCII network, further verifying their importance for the establishment and progression of lung cancer since they are also in the LC&LD network and in the LCI network. Likewise, EBF1 and RUNX1 also appear in the LCII network, and they are also in the LCI coexpression network, probably strengthening their importance and association with the progression of some types of lung cancer [51]. EBF1 is only deregulated in lung cancer, but only in two of the ten datasets, while RUNX1 is deregulated in lung cancer and breast cancer, but its regulation varies: it is positive in some datasets and negative in others of the same type of cancer. The RUNX family of TFs can act as an oncogene or as a tumor suppressor during oncogenic processes, suggesting their importance as biomarkers of cancer [106]. The other eight TFs are unique to the LCII coexpression network, which suggests that they are more important for lung cancer than for other types of cancer as they do not appear in the previous networks. Moreover, their association with the establishment or progression should be studied experimentally, along with the enrichment of their binding motifs in the winning DEGs associated with lung cancer.
The transcriptomic analysis (Supplementary Table S2) and the experimental evidence available for each of the TFs of the LCII network (Supplementary Table S4) showed that six TFs of the LCII network are deregulated in between three and six sets of lung cancer, and also in some other types of cancer. FOXF1 and GATA6 stand out since they are deregulated in the majority, eight and seven, respectively, of the ten sets of lung cancer, in none of the others types of cancer (Table 2), and in the PAH set, which suggests their association with the establishment of tumor pathology in the lung [20]. Experimental studies have shown that the negative regulation of FOXF1 is related to the expression of genes associated with extracellular matrix remodeling and cell cycle progression during the regeneration of lung tissue [107]. Likewise, FOXF1 has proven to be a mediator of cellular reprogramming to reacquire stem characteristics [108]. Long non-coding RNA located near the coding region of FOXF1, called FOXF1-AS1, has been negatively regulated in lung cancer [109], associated with EMT, cell reprogramming, metastasis [110], and growth inhibition in NSCLC cancer cells [111]. On the other hand, retinoic acid affects the growth of lung adenocarcinoma by inducing cell differentiation and inhibiting proliferation after the activation of GATA6, and the inhibition of Wnt and EGFR [112]. GATA6 is essential for lineage selection, which directly associates effectors for lung epithelium specification and the inhibition of metastasis in lung adenocarcinoma [113].
HOXC6 and RFX2 are also deregulated in eight sets of lung cancer as FOXF1 and none of the other types of cancer (Table 2). HOXC6 (homeobox protein Hox-C6) is an overexpressed TF with a very high oncogenic potential in NSCLC progression as it is a regulator of genes related to cancer cells proliferation and metastasis [114]. RFX2 (regulatory factor X2) is overregulated in small-cell lung cancer, and it is related to chemoresistance [115]. The expression of RFX2 is negative in NSCLC and its subtypes’ datasets but positive in the SCLC dataset, which suggests its function could be that of a tumor suppressor in NSCLC and that of an oncogene in SCLC. SOX4 (SRY-related HMG-box 4) is related to cell fate differentiation and determination in male testis fertility [116], as well as cancer development and progression [117]. SOX4 is overregulated in all ten lung cancer datasets (Table 2), suggesting that it could be a key oncogene function in lung cancer. However, SOX4 is also upregulated in ductal carcinoma in situ and invasive breast carcinoma but downregulated in two sets of chronic lymphocytic leukemia (Table 1 and Table 2). Therefore, its role could be as a tumor suppressor in leukemia and as an oncogene in lung and breast cancer.
The coregulatory analysis allowed us to identify two coregulatory networks in lung and breast cancer. The small coregulatory network has two winning TFs (FOXM1 and MYBL2) coexpressed in the gene networks that coexpressed with the common winning DEGs between the three types of cancer and the winning DEGs related to lung cancer. The big coregulatory network has the top winning TFs. There is already some evidence that the coexpressed and winning TFs can form coregulatory complexes to specify patterns of gene expression. MYBL2 forms a complex with MuvB to increase the specificity of binding of FOXM1 to its target genes. Moreover, the MMB-FOXM1 complex regulates cell cycle genes during the G2/M mitosis phase [118]. ZBTB16 makes large regulatory complexes with other molecules to bind to the regulatory elements in the promoter region of the target genes [119]. ZBTB16 binds to corepressors and histone modification enzymes to change chromatin architecture and accessibility [120]. ZBTB16/PLZF forms a rare fusion with RARA by a reciprocal chromosomal translocation t(11;17)(q23;q21) in acute promyelocytic leukemia [121]. TAL1 also forms coregulatory complexes with LDB1, LMO2 [56], and binds to coactivators or corepressor proteins to positively and negatively regulate transcription [122]. FOXF1 interacts with PRC2 to regulate gene expression [123]. FOXF1 is a part of the Fanconi anemia protein complexes to respond to damages in the DNA [124]. The Kaplan–Meier survival analysis of top winning TFs showed an important association of their deregulation with overall survival of lung cancer patients with significant log-rank p values (Figure 11), therefore suggesting that this TF network is very important for cancer establishment and progression. However, it is important to carry out in-depth studies on the regulatory complexes that these TFs can form in order to clearly identify their architecture and specificity in the regulation of gene expression in signaling pathways related to the acquisition of the hallmarks of cancer.
5. Conclusions
The search for TFs biomarkers associated with the establishment and progression of lung cancer was extended with the comparisons of microarray datasets of lung cancer with other types of cancer. In the present study, we applied our own bioinformatic pipeline to analyze the complex regulatory mechanisms associated with the tumoral process, establishing simple rules that could be applied in every case. First, we identified all the deregulated genes associated in the three types of cancer and specifically with lung cancer establishment or progression and, between them, we highlighted the most important transcriptional regulators, as they were coexpressed in networks, with the common and unique DEGs related to lung cancer establishment and progression and potentially being able to form coregulatory complexes.
The LC&OC network allows identifying coexpressed winning DEGs and a TF associated with the establishment and progression of the tumor process in cancer. Meanwhile, the LCII network allowed us to identify new genes and TFs associated with the acquisition of cancer characteristics specifically in lung tissue. However, the winning DEGs identified in the LCII coexpression network must be further investigated to properly associate them with the acquisition of the hallmarks of cancer during the establishment and progression of tumoral processes in lung cells. The TF network identified has experimental evidence of its association with important biological processes and signaling pathways during the acquisition of the hallmarks of cancer, thus generating the characteristic metafirm in gene expression in general tumors and those specific to lung cancer and taking into account the great heterogeneity of cancer at cellular and population levels. Therefore, the winning TF network might be related to the formation of modular constructs with cis elements, such as enhancers, in the promoter of the winner DEGs, binding simultaneously with other cofactors and/or TFs as multiprotein complexes, to finally provide cells the ability to acquire the hallmarks of cancer. The network of winning TFs represents the transcriptional metafirm of cancer since it has evidence of coexpression with winning deregulated genes in addition to the possible formation of coregulatory complexes associated with the control of tumor suppressor and oncogenic gene expression programs and, therefore, may be related to tumor establishment and progression, as well as the survival of cancer patients.
B.A.O.-O. conducted the functional/enrichment analysis, the literature searching, the coexpression network and survival analysis, and contributed with the manuscript writing. D.A.O.-G. conducted the data pre-processing and the detection of differentially expressed genes (DEGs) using specific libraries in R. M.S.C.-P. contributed to the Gedevo network analysis. L.L.-K. proposed the combined analysis to identify common genes between pathologies, the step-by-step methodology applied, and led the process of data analysis. A.R., M.M. and A.C. contributed to the study conception and design, leading the results interpretation and making important contributions to the discussion section. All authors have read and agreed to the published version of the manuscript.
Not applicable.
Not applicable.
All microarray datasets are fully available in Gene Expression Omnibus (GEO) and Array Express.
The authors declare no conflict of interest.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Analyzed datasets, each study code, subjects’ disease, and number of samples.
Study Code | Subjects’ Disease | Samples | Reference |
---|---|---|---|
GSE19804 | Non-smoking women with NSCLC | Normal (60) vs. Cancer (60) | [ |
GSE10072 | Patients with lung adenocarcinoma | Normal (49) vs. Cancer (58) | [ |
GSE3268 | Patients with squamous lung cancer cells | Normal (5) vs. Cancer (5) | [ |
GSE108055 | Typical and atypical carcinoid, and SCLC | Normal (9) vs. Cancer (54) | [ |
E-MTAB−5231 | Patients with NSCLC | Normal (18) vs. Cancer (SCC = 11 AC = 11) | [ |
E-MTAB−3950 | Pre-invasive and invasive early squamous carcinoma | Normal (30) vs. Cancer (30) (SCC) | [ |
GSE52248 | Patients with lung adenocarcinoma | Normal (6) vs. Cancer (12) | [ |
GSE70089 | Patients with lung carcinoma | Normal (3) vs. Cancer(3) | [ |
GSE81089 | Patients with NSCLC | Normal (19) vs. Cancer (199) | [ |
GSE84776 | Patients with squamous lung cancer cells | Normal (9) vs. Cancer (9) | [ |
GSE10797 | Invasive breast cancer | Normal (10) vs. Cancer (56) | [ |
GSE21422 | Ductal carcinoma in situ and invasive breast carcinoma | Normal (5) vs. Cancer (14) | [ |
GSE26910 | Invasive breast primary breast cancer | Normal (6) vs. Cancer (6) | [ |
GSE3744 | Sporadic basal-like breast cancer | Normal (7) vs. Cancer (40) | [ |
GSE5764 | Invasive lobular and ductal breast cancer | Normal (10) vs. Cancer (20) | [ |
GSE22529 | Chronic lymphocytic leukemia | Normal (11) vs. Cancer (41) | [ |
GSE26725 | Chronic lymphocytic leukemia | Normal (5) vs. Cancer (12) | [ |
GSE5788 | T-cell prolymphocytic leukemia | Normal (8) vs. Cancer (6) | [ |
GSE6691 | Chronic lymphocytic leukemia | Normal (13) vs. Cancer (11) | [ |
GSE9476 | Acute myeloid leukemia | Normal (38) vs. Cancer (26) | [ |
List of winning transcription factors in common among the three types of cancer and unique to lung cancer. Number of deregulated lung cancer, breast cancer, and leukemia datasets.
Transcription Factors (TFs) | Lung Cancer (LC) | Breast Cancer (BC) | Leukemia (LK) | Total |
---|---|---|---|---|
ZBTB16 | 9 | 4 | 3 | 16 |
KLF4 | 9 | 4 | 1 | 14 |
TAL1 | 9 | 3 | 2 | 14 |
FOXM1 | 9 | 2 | 1 | 12 |
BZW2 | 9 | 1 | 1 | 11 |
HLF | 8 | 3 | 1 | 12 |
GPRASP1 | 8 | 2 | 2 | 12 |
MNDA | 8 | 2 | 1 | 11 |
PKNOX2 | 8 | 1 | 1 | 10 |
TFAP2C | 8 | 1 | 1 | 10 |
SOX4 | 10 | 1 | 2 | 13 |
EGR1 | 7 | 4 | 3 | 14 |
FOSB | 7 | 4 | 1 | 12 |
SOX17 | 10 | 3 | 0 | 13 |
EPAS1 | 8 | 3 | 0 | 11 |
KLF2 | 8 | 3 | 0 | 11 |
ID4 | 8 | 3 | 0 | 11 |
MEIS1 | 8 | 2 | 0 | 10 |
MYBL2 | 8 | 2 | 0 | 10 |
NR2F1 | 8 | 2 | 0 | 10 |
DLX5 | 8 | 1 | 0 | 9 |
TBX5 | 8 | 1 | 0 | 9 |
NR4A3 | 8 | 0 | 1 | 9 |
ID2 | 7 | 0 | 3 | 10 |
ETV4 | 7 | 0 | 1 | 8 |
SOX12 | 7 | 0 | 1 | 8 |
TCF3 | 7 | 0 | 1 | 8 |
RORA | 6 | 0 | 2 | 8 |
FOXF1 | 8 | 0 | 0 | 8 |
HOXC6 | 8 | 0 | 0 | 8 |
RFX2 | 8 | 0 | 0 | 8 |
GATA6 | 7 | 0 | 0 | 7 |
RARA | 7 | 0 | 0 | 7 |
PAX9 | 7 | 0 | 0 | 7 |
Gedevo’s most significant alignments between lung cancer (LC) and breast cancer (BC) sets.
Alignment LC&BC | Number of Alignments | Percentage | Median |
---|---|---|---|
HEG1—HEG1 | 5 | 10.4% | 0.58 |
PLSCR4—PLSCR4 | 5 | 10.4% | 0.50 |
GMFG—GMFG | 4 | 8.3% | 0.51 |
FCGR3B—FCGR3B | 3 | 6.3% | 0.52 |
NME4—NME4 | 3 | 6.3% | 0.50 |
Gedevo’s most significant alignments between lung cancer (LC) sets and leukemia (LK) sets.
Alignment LC&LK | Number of Alignments | Percentage | Median |
---|---|---|---|
SNRK—SNRK | 6 | 15.0% | 0.51 |
BIRC5—BIRC5 | 5 | 12.5% | 0.57 |
GIMAP5—GIMAP5 | 3 | 7.5% | 0.51 |
HBB—HBB | 3 | 7.5% | 0.51 |
IL33—IL33 | 3 | 7.5% | 0.52 |
AKAP12—AKAP12 | 3 | 7.5% | 0.52 |
CD93—CD93 | 3 | 7.5% | 0.60 |
Supplementary Materials
The following supporting information can be downloaded at:
References
1. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2022. CA. Cancer J. Clin.; 2022; 72, pp. 7-33. [DOI: https://dx.doi.org/10.3322/caac.21708] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35020204]
2. Dela Cruz, C.S.; Tanoue, L.T.; Matthay, R.A. Lung Cancer: Epidemiology, Etiology, and Prevention. Clin. Chest Med.; 2011; 32, pp. 605-644. [DOI: https://dx.doi.org/10.1016/j.ccm.2011.09.001] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22054876]
3. Hassanpour, S.H.; Dehghani, M. Review of Cancer from Perspective of Molecular. J. Cancer Res. Pract.; 2017; 4, pp. 127-129. [DOI: https://dx.doi.org/10.1016/j.jcrpr.2017.07.001]
4. Gridelli, C.; Rossi, A.; Carbone, D.P.; Guarize, J.; Karachaliou, N.; Mok, T.; Petrella, F.; Spaggiari, L.; Rosell, R. Non-Small-Cell Lung Cancer. Nat. Rev. Dis. Primer; 2015; 1, 15009. [DOI: https://dx.doi.org/10.1038/nrdp.2015.9]
5. Vajpeyi, R. WHO Classification of Tumours: Pathology and Genetics of Tumours of the Breast and Female Genital Organs. J. Clin. Pathol.; 2005; 58, pp. 671-672.
6. Eliyatkın, N.; Yalçın, E.; Zengel, B.; Aktaş, S.; Vardar, E. Molecular Classification of Breast Carcinoma: From Traditional, Old-Fashioned Way to A New Age, and A New Way. J. Breast Health; 2015; 11, pp. 59-66. [DOI: https://dx.doi.org/10.5152/tjbh.2015.1669]
7. Chennamadhavuni, A.; Lyengar, V.; Shimanovsky, A. Leukemia. StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022; Available online: https://www.ncbi.nlm.nih.gov/books/NBK560490/ (accessed on 26 May 2022).
8. Kamel, H.F.M.; Al-Amodi, H.S.A.B. Exploitation of Gene Expression and Cancer Biomarkers in Paving the Path to Era of Personalized Medicine. Genom. Proteom. Bioinform.; 2017; 15, pp. 220-235. [DOI: https://dx.doi.org/10.1016/j.gpb.2016.11.005]
9. Dong, Z.-Y.; Wu, Y.-L. What Is the Significance of TP53 and KRAS Mutation for Immunotherapy in Non-Small Cell Lung Cancer?. Transl. Cancer Res.; 2017; 6, pp. S1115-S1117. [DOI: https://dx.doi.org/10.21037/tcr.2017.06.25]
10. Fathi, Z.; Mousavi, S.A.J.; Roudi, R.; Ghazi, F. Distribution of KRAS, DDR2, and TP53 Gene Mutations in Lung Cancer: An Analysis of Iranian Patients. PLoS ONE; 2018; 13, e0200633. [DOI: https://dx.doi.org/10.1371/journal.pone.0200633]
11. Braun, M.M.; Caporaso, N.E.; Page, W.F.; Hoover, R.N. Genetic Component of Lung Cancer: Cohort Study of Twins. Lancet Lond. Engl.; 1994; 344, pp. 440-443. [DOI: https://dx.doi.org/10.1016/S0140-6736(94)91770-1]
12. Blanchon, F.; Grivaux, M.; Asselain, B.; Lebas, F.-X.; Orlando, J.-P.; Piquet, J.; Zureik, M. 4-Year Mortality in Patients with Non-Small-Cell Lung Cancer: Development and Validation of a Prognostic Index. Lancet Oncol.; 2006; 7, pp. 829-836. [DOI: https://dx.doi.org/10.1016/S1470-2045(06)70868-3]
13. Hutter, C.M.; Mechanic, L.E.; Chatterjee, N.; Kraft, P.; Gillanders, E.M. Gene-Environment Interactions in Cancer Epidemiology: A National Cancer Institute Think Tank Report. Genet. Epidemiol.; 2013; 37, pp. 643-657. [DOI: https://dx.doi.org/10.1002/gepi.21756] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24123198]
14. Bahrami, S.; Drabløs, F. Gene Regulation in the Immediate-Early Response Process. Adv. Biol. Regul.; 2016; 62, pp. 37-49. [DOI: https://dx.doi.org/10.1016/j.jbior.2016.05.001] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27220739]
15. Palstra, R.-J. Transcription Factor Binding at Enhancers: Shaping a Genomic Regulatory Landscape in Flux. Front. Genet.; 2012; 3, 195. [DOI: https://dx.doi.org/10.3389/fgene.2012.00195] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23060900]
16. Lambert, S.A.; Jolma, A.; Campitelli, L.F.; Das, P.K.; Yin, Y.; Albu, M.; Chen, X.; Taipale, J.; Hughes, T.R.; Weirauch, M.T. The Human Transcription Factors. Cell; 2018; 172, pp. 650-665. [DOI: https://dx.doi.org/10.1016/j.cell.2018.01.029] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29425488]
17. Huilgol, D.; Venkataramani, P.; Nandi, S.; Bhattacharjee, S. Transcription Factors That Govern Development and Disease: An Achilles Heel in Cancer. Genes; 2019; 10, 794. [DOI: https://dx.doi.org/10.3390/genes10100794]
18. Bhagwat, A.S.; Vakoc, C.R. Targeting Transcription Factors in Cancer. Trends Cancer; 2015; 1, 53. [DOI: https://dx.doi.org/10.1016/j.trecan.2015.07.001] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26645049]
19. Henao, J.D. Coexnet: An R Package to Build CO-EXpression NETworks from Microarray Data; 2018; [Software Version 0.1] Available online: https://bioconductor.org/packages/coexnet/ (accessed on 26 May 2022).
20. Otálora-Otálora, B.A.; Florez, M.; López-Kleine, L.; Canas Arboleda, A.; Grajales Urrego, D.M.; Rojas, A. Joint Transcriptomic Analysis of Lung Cancer and Other Lung Diseases. Front. Genet.; 2019; 10, 1260. [DOI: https://dx.doi.org/10.3389/fgene.2019.01260]
21. Leal, L.G.; López, C.; López-Kleine, L. Construction and Comparison of Gene Co-Expression Networks Shows Complex Plant Immune Responses. PeerJ; 2014; 2, e610. [DOI: https://dx.doi.org/10.7717/peerj.610]
22. Oshlack, A.; Robinson, M.D.; Young, M.D. From RNA-Seq Reads to Differential Expression Results. Genome Biol.; 2010; 11, 220. [DOI: https://dx.doi.org/10.1186/gb-2010-11-12-220]
23. Lu, T.P.; Tsai, M.H.; Lee, J.M.; Hsu, C.P.; Chen, P.C.; Lin, C.W.; Shih, J.Y.; Yang, P.C.; Hsiao, C.K.; Lai, L.C. et al. Identification of a Novel Biomarker, SEMA5A, for Non-Small Cell Lung Carcinoma in Nonsmoking Women. Cancer Epidemiol. Biomark. Prev.; 2010; 19, pp. 2590-2597. [DOI: https://dx.doi.org/10.1158/1055-9965.EPI-10-0332]
24. Landi, M.T.; Dracheva, T.; Rotunno, M.; Figueroa, J.D.; Liu, H.; Dasgupta, A.; Mann, F.E.; Fukuoka, J.; Hames, M.; Bergen, A.W. et al. Gene Expression Signature of Cigarette Smoking and Its Role in Lung Adenocarcinoma Development and Survival. PLoS ONE; 2008; 3, e1651. [DOI: https://dx.doi.org/10.1371/journal.pone.0001651] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18297132]
25. Wachi, S.; Yoneda, K.; Wu, R. Interactome-Transcriptome Analysis Reveals the High Centrality of Genes Differentially Expressed in Lung Cancer Tissues. Bioinformatics; 2005; 21, pp. 4205-4208. [DOI: https://dx.doi.org/10.1093/bioinformatics/bti688] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16188928]
26. Asiedu, M.K.; Thomas, C.F.; Dong, J.; Schulte, S.C.; Khadka, P.; Sun, Z.; Kosari, F.; Jen, J.; Molina, J.; Vasmatzis, G. et al. Pathways Impacted by Genomic Alterations in Pulmonary Carcinoid Tumors. Clin. Cancer Res.; 2018; 24, pp. 1691-1704. [DOI: https://dx.doi.org/10.1158/1078-0432.CCR-17-0252] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29351916]
27. Willuda, J.; Linden, L.; Lerchen, H.-G.; Kopitz, C.; Stelte-Ludwig, B.; Pena, C.; Lange, C.; Golfier, S.; Kneip, C.; Carrigan, P.E. et al. Preclinical Antitumor Efficacy of BAY 1129980—A Novel Auristatin-Based Anti-C4.4A (LYPD3) Antibody–Drug Conjugate for the Treatment of Non–Small Cell Lung Cancer. Mol. Cancer Ther.; 2017; 16, pp. 893-904. [DOI: https://dx.doi.org/10.1158/1535-7163.MCT-16-0474]
28. Koper, A.; Zeef, L.A.H.; Joseph, L.; Kerr, K.; Gosney, J.; Lindsay, M.A.; Booton, R. Whole Transcriptome Analysis of Pre-Invasive and Invasive Early Squamous Lung Carcinoma in Archival Laser Microdissected Samples. Respir. Res.; 2017; 18, 12. [DOI: https://dx.doi.org/10.1186/s12931-016-0496-3]
29. Morton, M.L.; Bai, X.; Merry, C.R.; Linden, P.A.; Khalil, A.M.; Leidner, R.S.; Thompson, C.L. Identification of MRNAs and LincRNAs Associated with Lung Cancer Progression Using Next-Generation RNA Sequencing from Laser Micro-Dissected Archival FFPE Tissue Specimens. Lung Cancer Amst. Neth.; 2014; 85, pp. 31-39. [DOI: https://dx.doi.org/10.1016/j.lungcan.2014.03.020]
30. Li, X.; Liu, Y.; Salz, T.; Hansen, K.D.; Feinberg, A. Whole-Genome Analysis of the Methylome and Hydroxymethylome in Normal and Malignant Lung and Liver. Genome Res.; 2016; 26, pp. 1730-1741. [DOI: https://dx.doi.org/10.1101/gr.211854.116]
31. Mezheyeuski, A.; Bergsland, C.H.; Backman, M.; Djureinovic, D.; Sjöblom, T.; Bruun, J.; Micke, P. Multispectral Imaging for Quantitative and Compartment-Specific Immune Infiltrates Reveals Distinct Immune Profiles That Classify Lung Cancer Patients. J. Pathol.; 2018; 244, pp. 421-431. [DOI: https://dx.doi.org/10.1002/path.5026]
32. Nazarov, P.V.; Muller, A.; Kaoma, T.; Nicot, N.; Maximo, C.; Birembaut, P.; Tran, N.L.; Dittmar, G.; Vallar, L. RNA Sequencing and Transcriptome Arrays Analyses Show Opposing Results for Alternative Splicing in Patient Derived Samples. BMC Genom.; 2017; 18, 443. [DOI: https://dx.doi.org/10.1186/s12864-017-3819-y]
33. Casey, T.; Bond, J.; Tighe, S.; Hunter, T.; Lintault, L.; Patel, O.; Eneman, J.; Crocker, A.; White, J.; Tessitore, J. et al. Molecular Signatures Suggest a Major Role for Stromal Cells in Development of Invasive Breast Cancer. Breast Cancer Res. Treat.; 2008; 114, pp. 47-62. [DOI: https://dx.doi.org/10.1007/s10549-008-9982-8]
34. Kretschmer, C.; Sterner-Kock, A.; Siedentopf, F.; Schoenegg, W.; Schlag, P.M.; Kemmner, W. Identification of Early Molecular Markers for Breast Cancer. Mol. Cancer; 2011; 10, 15. [DOI: https://dx.doi.org/10.1186/1476-4598-10-15]
35. Planche, A.; Bacac, M.; Provero, P.; Fusco, C.; Delorenzi, M.; Stehle, J.-C.; Stamenkovic, I. Identification of Prognostic Molecular Features in the Reactive Stroma of Human Breast and Prostate Cancer. PLoS ONE; 2011; 6, e18640. [DOI: https://dx.doi.org/10.1371/journal.pone.0018640] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21611158]
36. Alimonti, A.; Carracedo, A.; Clohessy, J.G.; Trotman, L.C.; Nardella, C.; Egia, A.; Salmena, L.; Sampieri, K.; Haveman, W.J.; Brogi, E. et al. Subtle Variations in Pten Dose Determine Cancer Susceptibility. Nat. Genet.; 2010; 42, pp. 454-458. [DOI: https://dx.doi.org/10.1038/ng.556] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20400965]
37. Richardson, A.L.; Wang, Z.C.; De Nicolo, A.; Lu, X.; Brown, M.; Miron, A.; Liao, X.; Iglehart, J.D.; Livingston, D.M.; Ganesan, S. X Chromosomal Abnormalities in Basal-like Human Breast Cancer. Cancer Cell; 2006; 9, pp. 121-132. [DOI: https://dx.doi.org/10.1016/j.ccr.2006.01.013] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16473279]
38. Turashvili, G.; Bouchal, J.; Baumforth, K.; Wei, W.; Dziechciarkova, M.; Ehrmann, J.; Klein, J.; Fridman, E.; Skarda, J.; Srovnal, J. et al. Novel Markers for Differentiation of Lobular and Ductal Invasive Breast Carcinomas by Laser Microdissection and Microarray Analysis. BMC Cancer; 2007; 7, 55. [DOI: https://dx.doi.org/10.1186/1471-2407-7-55] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17389037]
39. Gutierrez, A.; Tschumper, R.C.; Wu, X.; Shanafelt, T.D.; Eckel-Passow, J.; Huddleston, P.M.; Slager, S.L.; Kay, N.E.; Jelinek, D.F. LEF-1 Is a Prosurvival Factor in Chronic Lymphocytic Leukemia and Is Expressed in the Preleukemic State of Monoclonal B-Cell Lymphocytosis. Blood; 2010; 116, pp. 2975-2983. [DOI: https://dx.doi.org/10.1182/blood-2010-02-269878]
40. Vargova, K.; Curik, N.; Burda, P.; Basova, P.; Kulvait, V.; Pospisil, V.; Savvulidi, F.; Kokavec, J.; Necas, E.; Berkova, A. et al. MYB Transcriptionally Regulates the MiR-155 Host Gene in Chronic Lymphocytic Leukemia. Blood; 2011; 117, pp. 3816-3825. [DOI: https://dx.doi.org/10.1182/blood-2010-05-285064]
41. Dürig, J.; Bug, S.; Klein-Hitpass, L.; Boes, T.; Jöns, T.; Martin-Subero, J.I.; Harder, L.; Baudis, M.; Dührsen, U.; Siebert, R. Combined Single Nucleotide Polymorphism-Based Genomic Mapping and Global Gene Expression Profiling Identifies Novel Chromosomal Imbalances, Mechanisms and Candidate Genes Important in the Pathogenesis of T-Cell Prolymphocytic Leukemia with Inv(14)(Q11q32). Leukemia; 2007; 21, pp. 2153-2163. [DOI: https://dx.doi.org/10.1038/sj.leu.2404877]
42. Gutiérrez, N.C.; Ocio, E.M.; de las Rivas, J.; Maiso, P.; Delgado, M.; Fermiñán, E.; Arcos, M.J.; Sánchez, M.L.; Hernández, J.M.; San Miguel, J.F. Gene Expression Profiling of B Lymphocytes and Plasma Cells from Waldenström’s Macroglobulinemia: Comparison with Expression Patterns of the Same Cell Counterparts from Chronic Lymphocytic Leukemia, Multiple Myeloma and Normal Individuals. Leukemia; 2007; 21, pp. 541-549. [DOI: https://dx.doi.org/10.1038/sj.leu.2404520]
43. Stirewalt, D.L.; Meshinchi, S.; Kopecky, K.J.; Fan, W.; Pogosova-Agadjanyan, E.L.; Engel, J.H.; Cronk, M.R.; Dorcy, K.S.; McQuary, A.R.; Hockenbery, D. et al. Identification of Genes with Abnormal Expression Changes in Acute Myeloid Leukemia. Genes. Chromosomes Cancer; 2008; 47, pp. 8-20. [DOI: https://dx.doi.org/10.1002/gcc.20500] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17910043]
44. Dennis, G.; Sherman, B.T.; Hosack, D.A.; Yang, J.; Gao, W.; Lane, H.C.; Lempicki, R.A. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol.; 2003; 4, R60. [DOI: https://dx.doi.org/10.1186/gb-2003-4-9-r60]
45. Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol.; 1995; 57, pp. 289-300. [DOI: https://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x]
46. Ibragimov, R.; Malek, M.; Guo, J.; Baumbach, J. GEDEVO: An Evolutionary Graph Edit Distance Algorithm for Biological Network Alignment; Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik GmbH, Wadern/Saarbruecken, Germany. Proceedings of the German Conference on Bioinformatics; Göttingen, Germany, 10–13 September 2013; pp. 68-79.
47. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models. Genome Res.; 2003; 13, pp. 2498-2503. [DOI: https://dx.doi.org/10.1101/gr.1239303]
48. Janky, R.; Verfaillie, A.; Imrichová, H.; Van de Sande, B.; Standaert, L.; Christiaens, V.; Hulselmans, G.; Herten, K.; Naval Sanchez, M.; Potier, D. et al. IRegulon: From a Gene List to a Gene Regulatory Network Using Large Motif and Track Collections. PLoS Comput. Biol.; 2014; 10, e1003731. [DOI: https://dx.doi.org/10.1371/journal.pcbi.1003731] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25058159]
49. Nicolle, R.; Radvanyi, F.; Elati, M. CoRegNet: Reconstruction and Integrated Analysis of Co-Regulatory Networks. Bioinformatics; 2015; 31, pp. 3066-3068. [DOI: https://dx.doi.org/10.1093/bioinformatics/btv305] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25979476]
50. Stalpers, L.J.A.; Kaplan, E.L. Edward L. Kaplan and the Kaplan-Meier Survival Curve. BSHM Bull. J. Br. Soc. Hist. Math.; 2018; 33, pp. 109-135. [DOI: https://dx.doi.org/10.1080/17498430.2018.1450055]
51. Otálora-Otálora, B.A. Identificación de Factores de Transcripción Asociados al Establecimiento y Progresión Del Cáncer de Pulmón Mediante Análisis Bioinformático: Validación Experimental de RUNX2 En Cáncer de Pulmón. Univ. Nac. Colomb.; 2020; pp. 1-225.
52. Papetti, M.; Augenlicht, L.H. MYBL2, a Link between Proliferation and Differentiation in Maturing Colon Epithelial Cells. J. Cell. Physiol.; 2011; 226, pp. 785-791. [DOI: https://dx.doi.org/10.1002/jcp.22399]
53. Jin, Y.; Nenseth, H.Z.; Saatcioglu, F. Role of PLZF as a Tumor Suppressor in Prostate Cancer. Oncotarget; 2017; 8, pp. 71317-71324. [DOI: https://dx.doi.org/10.18632/oncotarget.19813]
54. Xiao, G.-Q.; Li, F.; Findeis-Hosey, J.; Hyrien, O.; Unger, P.D.; Xiao, L.; Dunne, R.; Kim, E.S.; Yang, Q.; McMahon, L. et al. Down-Regulation of Cytoplasmic PLZF Correlates with High Tumor Grade and Tumor Aggression in Non–Small Cell Lung Carcinoma. Hum. Pathol.; 2015; 46, pp. 1607-1615. [DOI: https://dx.doi.org/10.1016/j.humpath.2015.06.021] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26297253]
55. He, J.; Wu, M.; Xiong, L.; Gong, Y.; Yu, R.; Peng, W.; Li, L.; Li, L.; Tian, S.; Wang, Y. et al. BTB/POZ Zinc Finger Protein ZBTB16 Inhibits Breast Cancer Proliferation and Metastasis through Upregulating ZBTB28 and Antagonizing BCL6/ZBTB27. Clin. Epigenetics; 2020; 12, 82. [DOI: https://dx.doi.org/10.1186/s13148-020-00867-9] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32517789]
56. Porcher, C.; Chagraoui, H.; Kristiansen, M.S. SCL/TAL1: A Multifaceted Regulator from Blood Development to Disease. Blood; 2017; 129, pp. 2051-2060. [DOI: https://dx.doi.org/10.1182/blood-2016-12-754051]
57. Shivdasani, R.A.; Mayer, E.L.; Orkin, S.H. Absence of Blood Formation in Mice Lacking the T-Cell Leukaemia Oncoprotein Tal-1/SCL. Nature; 1995; 373, pp. 432-434. [DOI: https://dx.doi.org/10.1038/373432a0]
58. Meng, X.; Lu, P.; Bai, H.; Xiao, P.; Fan, Q. Transcriptional Regulatory Networks in Human Lung Adenocarcinoma. Mol. Med. Rep.; 2012; 6, pp. 961-966. [DOI: https://dx.doi.org/10.3892/mmr.2012.1034] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22895549]
59. Evans, P.M.; Liu, C. Role of Krüppel-like Factor 4 in Normal Homeostasis, Cancer, and Stem Cells. Acta Biochim. Biophys. Sin.; 2008; 40, pp. 554-564. [DOI: https://dx.doi.org/10.1111/j.1745-7270.2008.00439.x]
60. Evans, P.M.; Zhang, W.; Chen, X.; Yang, J.; Bhakat, K.K.; Liu, C. Krüppel-like Factor 4 Is Acetylated by P300 and Regulates Gene Transcription via Modulation of Histone Acetylation. J. Biol. Chem.; 2007; 282, pp. 33994-34002. [DOI: https://dx.doi.org/10.1074/jbc.M701847200]
61. Cho, Y.G.; Song, J.H.; Kim, C.J.; Nam, S.W.; Yoo, N.J.; Lee, J.Y.; Park, W.S. Genetic and Epigenetic Analysis of the KLF4 Gene in Gastric Cancer. APMIS Acta Pathol. Microbiol. Immunol. Scand.; 2007; 115, pp. 802-808. [DOI: https://dx.doi.org/10.1111/j.1600-0463.2007.apm_643.x]
62. Kalathil, D.; John, S.; Nair, A.S. FOXM1 and Cancer: Faulty Cellular Signaling Derails Homeostasis. Front. Oncol.; 2021; 10, 626836. [DOI: https://dx.doi.org/10.3389/fonc.2020.626836]
63. Kopanja, D.; Pandey, A.; Kiefer, M.; Wang, Z.; Chandan, N.; Carr, J.R.; Franks, R.; Yu, D.-Y.; Guzman, G.; Maker, A. et al. Essential Roles of FoxM1 in Ras-Induced Liver Cancer Progression and in Cancer Cells with Stem Cell Features. J. Hepatol.; 2015; 63, pp. 429-436. [DOI: https://dx.doi.org/10.1016/j.jhep.2015.03.023]
64. Blanchard, T.; Czinn, S.; Banerjee, V.; Sharda, N.; Bafford, A.; Mubariz, F.; Morozov, D.; Passaniti, A.; Ahmed, A.; Banerjee, A. Identification of Cross Talk between FoxM1 and RASSF1A as a Therapeutic Target of Colon Cancer. Cancers; 2019; 11, 199. [DOI: https://dx.doi.org/10.3390/cancers11020199] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30744076]
65. Cui, J.; Xia, T.; Xie, D.; Gao, Y.; Jia, Z.; Wei, D.; Wang, L.; Huang, S.; Quan, M.; Xie, K. HGF/Met and FOXM1 Form a Positive Feedback Loop and Render Pancreatic Cancer Cells Resistance to Met Inhibition and Aggressive Phenotypes. Oncogene; 2016; 35, pp. 4708-4718. [DOI: https://dx.doi.org/10.1038/onc.2016.14] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26876216]
66. Francica, P.; Nisa, L.; Aebersold, D.; Langer, R.; Bladt, F.; Blaukat, A.; Stroka, D.; Rodríguez Martínez, M.; Zimmer, Y.; Medova, M. Depletion of FOXM1 via MET Targeting Underlies Establishment of a DNA Damage-Induced Senescence Program in Gastric Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res.; 2016; 22, pp. 5322-5336. [DOI: https://dx.doi.org/10.1158/1078-0432.CCR-15-2987]
67. Bektas, N.; ten Haaf, A.; Veeck, J.; Wild, P.J.; Lüscher-Firzlaff, J.; Hartmann, A.; Knüchel, R.; Dahl, E. Tight Correlation between Expression of the Forkhead Transcription Factor FOXM1 and HER2 in Human Breast Cancer. BMC Cancer; 2008; 8, 42. [DOI: https://dx.doi.org/10.1186/1471-2407-8-42] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18254960]
68. Katoh, M. Molecular Cloning and Characterization of Human SOX17. Int. J. Mol. Med.; 2002; 9, pp. 153-157. [DOI: https://dx.doi.org/10.3892/ijmm.9.2.153] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11786926]
69. Fu, D.-Y.; Wang, Z.-M.; Li-Chen,; Wang, B.-L.; Shen, Z.-Z.; Huang, W.; Shao, Z.-M. Sox17, the Canonical Wnt Antagonist, Is Epigenetically Inactivated by Promoter Methylation in Human Breast Cancer. Breast Cancer Res. Treat.; 2010; 119, pp. 601-612. [DOI: https://dx.doi.org/10.1007/s10549-009-0339-8]
70. Ansari, A.; Pillarisetty, L.S. Embryology, Ectoderm. StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022; Available online: http://www.ncbi.nlm.nih.gov/books/NBK539836/ (accessed on 26 May 2022).
71. Xu, X.-H.; Bao, Y.; Wang, X.; Yan, F.; Guo, S.; Ma, Y.; Xu, D.; Jin, L.; Xu, J.; Wang, J. Hypoxic-Stabilized EPAS1 Proteins Transactivate DNMT1 and Cause Promoter Hypermethylation and Transcription Inhibition of EPAS1 in Non-Small Cell Lung Cancer. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol.; 2018; 32, pp. 6694-6705. [DOI: https://dx.doi.org/10.1096/fj.201700715]
72. Putra, A.C.; Eguchi, H.; Lee, K.L.; Yamane, Y.; Gustine, E.; Isobe, T.; Nishiyama, M.; Hiyama, K.; Poellinger, L.; Tanimoto, K. The A Allele at Rs13419896 of EPAS1 Is Associated with Enhanced Expression and Poor Prognosis for Non-Small Cell Lung Cancer. PLoS ONE; 2015; 10, e0134496. [DOI: https://dx.doi.org/10.1371/journal.pone.0134496]
73. Wang, Z.; Wei, Y.; Zhang, R.; Su, L.; Gogarten, S.M.; Liu, G.; Brennan, P.; Field, J.K.; McKay, J.D.; Lissowska, J. et al. Multi-Omics Analysis Reveals a HIF Network and Hub Gene EPAS1 Associated with Lung Adenocarcinoma. eBioMedicine; 2018; 32, pp. 93-101. [DOI: https://dx.doi.org/10.1016/j.ebiom.2018.05.024]
74. Song, Y.; Zhang, M.; Lu, M.M.; Qu, L.Y.; Xu, S.G.; Li, Y.Z.; Wang, M.Y.; Zhu, H.F.; Zhang, Z.Y.; He, G.Y. et al. EPAS1 Targeting by MiR-152-3p in Paclitaxel-Resistant Breast Cancer. J. Cancer; 2020; 11, pp. 5822-5830. [DOI: https://dx.doi.org/10.7150/jca.46898]
75. Wang, F.; Zhu, Y.; Huang, Y.; McAvoy, S.; Johnson, J.; Th, C.; Tk, C.; Kw, L.; Sf, Y.; Mm, Y. et al. Transcriptional Repression of WEE1 by Kruppel-like Factor 2 Is Involved in DNA Damage-Induced Apoptosis. Oncogene; 2005; 24, pp. 3875-3885. [DOI: https://dx.doi.org/10.1038/sj.onc.1208546] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15735666]
76. Bhattacharya, R.; Senbanerjee, S.; Lin, Z.; Mir, S.; Hamik, A.; Wang, P.; Mukherjee, P.; Mukhopadhyay, D.; Jain, M.K. Inhibition of Vascular Permeability Factor/Vascular Endothelial Growth Factor-Mediated Angiogenesis by the Kruppel-like Factor KLF2. J. Biol. Chem.; 2005; 280, pp. 28848-28851. [DOI: https://dx.doi.org/10.1074/jbc.C500200200]
77. Wu, J.; Lingrel, J.B. KLF2 Inhibits Jurkat T Leukemia Cell Growth via Upregulation of Cyclin-Dependent Kinase Inhibitor P21WAF1/CIP1. Oncogene; 2004; 23, pp. 8088-8096. [DOI: https://dx.doi.org/10.1038/sj.onc.1207996] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15361832]
78. Jiang, W.; Xu, X.; Deng, S.; Luo, J.; Xu, H.; Wang, C.; Sun, T.; Lei, G.; Zhang, F.; Yang, C. et al. Methylation of Kruppel-like Factor 2 (KLF2) Associates with Its Expression and Non-Small Cell Lung Cancer Progression. Am. J. Transl. Res.; 2017; 9, pp. 2024-2037. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28469808]
79. Zhang, W.; Levi, L.; Banerjee, P.; Jain, M.; Noy, N. Kruppel-like Factor 2 Suppresses Mammary Carcinoma Growth by Regulating Retinoic Acid Signaling. Oncotarget; 2015; 6, pp. 35830-35842. [DOI: https://dx.doi.org/10.18632/oncotarget.5767]
80. Pan, S.-H.; Hsu, Y.L.; Hung, P.-F.; Wang, C.-J.; Wang, C.-C. Abstract 1431: Id4 Inhibits Cancer Metastasis through EMT Regulation in Lung Cancer. Cancer Res.; 2015; 75, 1431. [DOI: https://dx.doi.org/10.1158/1538-7445.AM2015-1431]
81. Qi, K.; Li, Y.; Li, X.; Lei, X.; Wang, B.; Zhang, L.; Chu, X. Id4 Promotes Cisplatin Resistance in Lung Cancer through the P38 MAPK Pathway. Anticancer Drugs; 2016; 27, pp. 970-978. [DOI: https://dx.doi.org/10.1097/CAD.0000000000000414]
82. Mullican, S.E.; Zhang, S.; Konopleva, M.; Ruvolo, V.; Andreeff, M.; Milbrandt, J.; Conneely, O.M. Abrogation of Nuclear Receptors Nr4a3 and Nr4a1 Leads to Development of Acute Myeloid Leukemia. Nat. Med.; 2007; 13, pp. 730-735. [DOI: https://dx.doi.org/10.1038/nm1579]
83. Fedorova, O.; Petukhov, A.; Daks, A.; Shuvalov, O.; Leonova, T.; Vasileva, E.; Aksenov, N.; Melino, G.; Barlev, N.A. Orphan Receptor NR4A3 Is a Novel Target of P53 That Contributes to Apoptosis. Oncogene; 2019; 38, pp. 2108-2122. [DOI: https://dx.doi.org/10.1038/s41388-018-0566-8]
84. Iavarone, A.; Garg, P.; Lasorella, A.; Hsu, J.; Israel, M.A. The Helix-Loop-Helix Protein Id-2 Enhances Cell Proliferation and Binds to the Retinoblastoma Protein. Genes Dev.; 1994; 8, pp. 1270-1284. [DOI: https://dx.doi.org/10.1101/gad.8.11.1270]
85. Coma, S.; Amin, D.N.; Shimizu, A.; Lasorella, A.; Iavarone, A.; Klagsbrun, M. Id2 Promotes Tumor Cell Migration and Invasion through Transcriptional Repression of Semaphorin 3F. Cancer Res.; 2010; 70, pp. 3823-3832. [DOI: https://dx.doi.org/10.1158/0008-5472.CAN-09-3048] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20388805]
86. Rätze, M.A.K.; Koorman, T.; Sijnesael, T.; Bassey-Archibong, B.; van de Ven, R.; Enserink, L.; Visser, D.; Jaksani, S.; Viciano, I.; Bakker, E.R.M. et al. Loss of E-Cadherin Leads to Id2-Dependent Inhibition of Cell Cycle Progression in Metastatic Lobular Breast Cancer. Oncogene; 2022; 41, pp. 2932-2944. [DOI: https://dx.doi.org/10.1038/s41388-022-02314-w] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35437308]
87. Lasorella, A.; Iavarone, A.; Israel, M.A. Id2 Specifically Alters Regulation of the Cell Cycle by Tumor Suppressor Proteins. Mol. Cell. Biol.; 1996; 16, pp. 2570-2578. [DOI: https://dx.doi.org/10.1128/MCB.16.6.2570]
88. Rollin, J.; Bléchet, C.; Régina, S.; Tenenhaus, A.; Guyétant, S.; Gidrol, X. The Intracellular Localization of ID2 Expression Has a Predictive Value in Non Small Cell Lung Cancer. PLoS ONE; 2009; 4, e4158. [DOI: https://dx.doi.org/10.1371/journal.pone.0004158] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19129913]
89. López-Kleine, L.; Leal, L.; López, C. Biostatistical Approaches for the Reconstruction of Gene Co-Expression Networks Based on Transcriptomic Data. Brief. Funct. Genom.; 2013; 12, pp. 457-467. [DOI: https://dx.doi.org/10.1093/bfgp/elt003] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23407269]
90. Lo Iacono, M.; Monica, V.; Saviozzi, S.; Ceppi, P.; Bracco, E.; Papotti, M.; Scagliotti, G.V. Aurora Kinase A Expression Is Associated with Lung Cancer Histological-Subtypes and with Tumor de-Differentiation. J. Transl. Med.; 2011; 9, 100. [DOI: https://dx.doi.org/10.1186/1479-5876-9-100] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21718475]
91. Dos Santos, E.O.; Carneiro-Lobo, T.C.; Aoki, M.N.; Levantini, E.; Bassères, D.S. Aurora Kinase Targeting in Lung Cancer Reduces KRAS-Induced Transformation. Mol. Cancer; 2016; 15, 12. [DOI: https://dx.doi.org/10.1186/s12943-016-0494-6]
92. Zhang, X.; Xiao, D.; Wang, Z.; Zou, Y.; Huang, L.; Lin, W.; Deng, Q.; Pan, H.; Zhou, J.; Liang, C. et al. MicroRNA-26a/b Regulate DNA Replication Licensing, Tumorigenesis, and Prognosis by Targeting CDC6 in Lung Cancer. Mol. Cancer Res.; 2014; 12, pp. 1535-1546. [DOI: https://dx.doi.org/10.1158/1541-7786.MCR-13-0641]
93. Hateboer, G.; Wobst, A.; Petersen, B.O.; Le Cam, L.; Vigo, E.; Sardet, C.; Helin, K. Cell Cycle-Regulated Expression of Mammalian CDC6 Is Dependent on E2F. Mol. Cell. Biol.; 1998; 18, pp. 6679-6697. [DOI: https://dx.doi.org/10.1128/MCB.18.11.6679]
94. Yan, Z.; DeGregori, J.; Shohet, R.; Leone, G.; Stillman, B.; Nevins, J.R.; Williams, R.S. Cdc6 Is Regulated by E2F and Is Essential for DNA Replication in Mammalian Cells. Proc. Natl. Acad. Sci. USA; 1998; 95, pp. 3603-3608. [DOI: https://dx.doi.org/10.1073/pnas.95.7.3603]
95. Sideridou, M.; Zakopoulou, R.; Evangelou, K.; Liontos, M.; Kotsinas, A.; Rampakakis, E.; Gagos, S.; Kahata, K.; Grabusic, K.; Gkouskou, K. et al. Cdc6 Expression Represses E-Cadherin Transcription and Activates Adjacent Replication Origins. J. Cell Biol.; 2011; 195, pp. 1123-1140. [DOI: https://dx.doi.org/10.1083/jcb.201108121]
96. Chen, X.; Chen, S.; Pei, N.; Mao, Y.; Wang, S.; Yan, R.; Bai, N.; Li, A.; Zhang, Y.; Du, H. et al. AAV-Mediated Angiotensin 1-7 Overexpression Inhibits Tumor Growth of Lung Cancer in Vitro and in Vivo. Oncotarget; 2017; 8, pp. 354-363. [DOI: https://dx.doi.org/10.18632/oncotarget.13396] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27861149]
97. Guo, Y.; Zhang, X.; Yang, M.; Miao, X.; Shi, Y.; Yao, J.; Tan, W.; Sun, T.; Zhao, D.; Yu, D. et al. Functional Evaluation of Missense Variations in the Human MAD1L1 and MAD2L1 Genes and Their Impact on Susceptibility to Lung Cancer. J. Med. Genet.; 2010; 47, pp. 616-622. [DOI: https://dx.doi.org/10.1136/jmg.2009.074252] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20516147]
98. Huang, L.Y.; Lee, Y.-S.; Huang, J.-J.; Chang, C.; Chang, J.-M.; Chuang, S.-H.; Kao, K.-J.; Tsai, Y.-J.; Tsai, P.-Y.; Liu, C.-W. et al. Characterization of the Biological Activity of a Potent Small Molecule Hec1 Inhibitor TAI-1. J. Exp. Clin. Cancer Res.; 2014; 33, 6. [DOI: https://dx.doi.org/10.1186/1756-9966-33-6] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24401611]
99. Yoshida, K.; Sato, M.; Hase, T.; Elshazley, M.; Yamashita, R.; Usami, N.; Taniguchi, T.; Yokoi, K.; Nakamura, S.; Kondo, M. et al. TIMELESS Is Overexpressed in Lung Cancer and Its Expression Correlates with Poor Patient Survival. Cancer Sci.; 2013; 104, pp. 171-177. [DOI: https://dx.doi.org/10.1111/cas.12068] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23173913]
100. Peng, F.; Li, Q.; Niu, S.-Q.; Shen, G.-P.; Luo, Y.; Chen, M.; Bao, Y. ZWINT Is the next Potential Target for Lung Cancer Therapy. J. Cancer Res. Clin. Oncol.; 2019; 145, [DOI: https://dx.doi.org/10.1007/s00432-018-2823-1]
101. Boucherat, O.; Vitry, G.; Trinh, I.; Paulin, R.; Provencher, S.; Bonnet, S. The Cancer Theory of Pulmonary Arterial Hypertension. Pulm. Circ.; 2017; 7, pp. 285-299. [DOI: https://dx.doi.org/10.1177/2045893217701438]
102. Ness, S.A. Myb Protein Specificity: Evidence of a Context-Specific Transcription Factor Code. Blood Cells. Mol. Dis.; 2003; 31, pp. 192-200. [DOI: https://dx.doi.org/10.1016/S1079-9796(03)00151-7]
103. Manak, J.R.; Mitiku, N.; Lipsick, J.S. Mutation of the Drosophila Homologue of the Myb Protooncogene Causes Genomic Instability. Proc. Natl. Acad. Sci. USA; 2002; 99, pp. 7438-7443. [DOI: https://dx.doi.org/10.1073/pnas.122231599]
104. Iltzsche, F.; Simon, K.; Stopp, S.; Pattschull, G.; Francke, S.; Wolter, P.; Hauser, S.; Murphy, D.J.; Garcia, P.; Rosenwald, A. et al. An Important Role for Myb-MuvB and Its Target Gene KIF23 in a Mouse Model of Lung Adenocarcinoma. Oncogene; 2017; 36, pp. 110-121. [DOI: https://dx.doi.org/10.1038/onc.2016.181]
105. Cao, Y.; Zhu, W.; Chen, W.; Wu, J.; Hou, G.; Li, Y. Prognostic Value of BIRC5 in Lung Adenocarcinoma Lacking EGFR, KRAS, and ALK Mutations by Integrated Bioinformatics Analysis. Dis. Markers; 2019; 2019, 5451290. [DOI: https://dx.doi.org/10.1155/2019/5451290] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31093306]
106. Otálora-Otálora, B.A.; Henríquez, B.; López-Kleine, L.; Rojas, A. RUNX Family: Oncogenes or Tumor Suppressors (Review). Oncol. Rep.; 2019; 42, pp. 3-19. [DOI: https://dx.doi.org/10.3892/or.2019.7149] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31059069]
107. Bolte, C.; Flood, H.M.; Ren, X.; Jagannathan, S.; Barski, A.; Kalin, T.V.; Kalinichenko, V.V. FOXF1 Transcription Factor Promotes Lung Regeneration after Partial Pneumonectomy. Sci. Rep.; 2017; 7, 10690. [DOI: https://dx.doi.org/10.1038/s41598-017-11175-3] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28878348]
108. Wei, H.-J.; Nickoloff, J.A.; Chen, W.-H.; Liu, H.-Y.; Lo, W.-C.; Chang, Y.-T.; Yang, P.-C.; Wu, C.-W.; Williams, D.F.; Gelovani, J.G. et al. FOXF1 Mediates Mesenchymal Stem Cell Fusion-Induced Reprogramming of Lung Cancer Cells. Oncotarget; 2014; 5, pp. 9514-9529. [DOI: https://dx.doi.org/10.18632/oncotarget.2413]
109. Herrera-Merchan, A.; Cuadros, M.; Rodriguez, M.I.; Rodriguez, S.; Torres, R.; Estecio, M.; Coira, I.F.; Loidi, C.; Saiz, M.; Carmona-Saez, P. et al. The Value of LncRNA FENDRR and FOXF1 as a Prognostic Factor for Survival of Lung Adenocarcinoma. Oncotarget; 2020; 11, pp. 1172-1185. [DOI: https://dx.doi.org/10.18632/oncotarget.22154]
110. Miao, L.; Huang, Z.; Zengli, Z.; Li, H.; Chen, Q.; Yao, C.; Cai, H.; Xiao, Y.; Xia, H.; Wang, Y. Loss of Long Noncoding RNA FOXF1-AS1 Regulates Epithelial-Mesenchymal Transition, Stemness and Metastasis of Non-Small Cell Lung Cancer Cells. Oncotarget; 2016; 7, pp. 68339-68349. [DOI: https://dx.doi.org/10.18632/oncotarget.11630]
111. Xu, R.; Han, Y. Long Non-Coding RNA FOXF1 Adjacent Non-Coding Developmental Regulatory RNA Inhibits Growth and Chemotherapy Resistance in Non-Small Cell Lung Cancer. Arch. Med. Sci.; 2019; 15, pp. 1539-1546. [DOI: https://dx.doi.org/10.5114/aoms.2019.86707]
112. Zito, G.; Naselli, F.; Saieva, L.; Raimondo, S.; Calabrese, G.; Guzzardo, C.; Forte, S.; Rolfo, C.; Parenti, R.; Alessandro, R. Retinoic Acid Affects Lung Adenocarcinoma Growth by Inducing Differentiation via GATA6 Activation and EGFR and Wnt Inhibition. Sci. Rep.; 2017; 7, 4770. [DOI: https://dx.doi.org/10.1038/s41598-017-05047-z]
113. Cheung, W.K.C.; Zhao, M.; Liu, Z.; Stevens, L.E.; Cao, P.D.; Fang, J.E.; Westbrook, T.F.; Nguyen, D.X. Control of Alveolar Differentiation by the Lineage Transcription Factors GATA6 and HOPX Inhibits Lung Adenocarcinoma Metastasis. Cancer Cell; 2013; 23, pp. 725-738. [DOI: https://dx.doi.org/10.1016/j.ccr.2013.04.009]
114. Yang, Y.; Tang, X.; Song, X.; Tang, L.; Cao, Y.; Liu, X.; Wang, X.; Li, Y.; Yu, M.; Wan, H. et al. Evidence for an Oncogenic Role of HOXC6 in Human Non-Small Cell Lung Cancer. PeerJ; 2019; 7, e6629. [DOI: https://dx.doi.org/10.7717/peerj.6629]
115. Taniwaki, M.; Daigo, Y.; Ishikawa, N.; Takano, A.; Tsunoda, T.; Yasui, W.; Inai, K.; Kohno, N.; Nakamura, Y. Gene Expression Profiles of Small-Cell Lung Cancers: Molecular Signatures of Lung Cancer. Int. J. Oncol.; 2006; 29, pp. 567-575. [DOI: https://dx.doi.org/10.3892/ijo.29.3.567] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16865272]
116. Jiang, T.; Hou, C.-C.; She, Z.-Y.; Yang, W.-X. The SOX Gene Family: Function and Regulation in Testis Determination and Male Fertility Maintenance. Mol. Biol. Rep.; 2013; 40, pp. 2187-2194. [DOI: https://dx.doi.org/10.1007/s11033-012-2279-3]
117. Kumar, P.; Mistri, T.K. Transcription Factors in SOX Family: Potent Regulators for Cancer Initiation and Development in the Human Body. Semin. Cancer Biol.; 2020; 67, pp. 105-113. [DOI: https://dx.doi.org/10.1016/j.semcancer.2019.06.016] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31288067]
118. Fischer, M.; Grossmann, P.; Padi, M.; DeCaprio, J.A. Integration of TP53, DREAM, MMB-FOXM1 and RB-E2F Target Gene Analyses Identifies Cell Cycle Gene Regulatory Networks. Nucleic Acids Res.; 2016; 44, pp. 6070-6086. [DOI: https://dx.doi.org/10.1093/nar/gkw523]
119. Suliman, B.; Xu, D.; Williams, B. The Promyelocytic Leukemia Zinc Finger Protein: Two Decades of Molecular Oncology. Front. Oncol.; 2012; 2, 74. [DOI: https://dx.doi.org/10.3389/fonc.2012.00074] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22822476]
120. Cheng, Z.-Y.; He, T.-T.; Gao, X.-M.; Zhao, Y.; Wang, J. ZBTB Transcription Factors: Key Regulators of the Development, Differentiation and Effector Function of T Cells. Front. Immunol.; 2021; 12, 713294. [DOI: https://dx.doi.org/10.3389/fimmu.2021.713294]
121. Chen, Z.; Guidez, F.; Rousselot, P.; Agadir, A.; Chen, S.J.; Wang, Z.Y.; Degos, L.; Zelent, A.; Waxman, S.; Chomienne, C. PLZF-RAR Alpha Fusion Proteins Generated from the Variant t(11;17)(Q23;Q21) Translocation in Acute Promyelocytic Leukemia Inhibit Ligand-Dependent Transactivation of Wild-Type Retinoic Acid Receptors. Proc. Natl. Acad. Sci. USA; 1994; 91, pp. 1178-1182. [DOI: https://dx.doi.org/10.1073/pnas.91.3.1178]
122. Chagraoui, H.; Kristiansen, M.S.; Ruiz, J.P.; Serra-Barros, A.; Richter, J.; Hall-Ponselé, E.; Gray, N.; Waithe, D.; Clark, K.; Hublitz, P. et al. SCL/TAL1 Cooperates with Polycomb RYBP-PRC1 to Suppress Alternative Lineages in Blood-Fated Cells. Nat. Commun.; 2018; 9, 5375. [DOI: https://dx.doi.org/10.1038/s41467-018-07787-6]
123. Khalil, A.M.; Guttman, M.; Huarte, M.; Garber, M.; Raj, A.; Rivea Morales, D.; Thomas, K.; Presser, A.; Bernstein, B.E.; van Oudenaarden, A. et al. Many Human Large Intergenic Noncoding RNAs Associate with Chromatin-Modifying Complexes and Affect Gene Expression. Proc. Natl. Acad. Sci. USA; 2009; 106, pp. 11667-11672. [DOI: https://dx.doi.org/10.1073/pnas.0904715106]
124. Pradhan, A.; Ustiyan, V.; Zhang, Y.; Kalin, T.V.; Kalinichenko, V.V. Forkhead Transcription Factor FoxF1 Interacts with Fanconi Anemia Protein Complexes to Promote DNA Damage Response. Oncotarget; 2015; 7, pp. 1912-1926. [DOI: https://dx.doi.org/10.18632/oncotarget.6422]
125. Bikeye, S.-N.N.; Colin, C.; Marie, Y.; Vampouille, R.; Ravassard, P.; Rousseau, A.; Boisselier, B.; Idbaih, A.; Calvo, C.F.; Leuraud, P. et al. ASPM-Associated Stem Cell Proliferation Is Involved in Malignant Progression of Gliomas and Constitutes an Attractive Therapeutic Target. Cancer Cell Int.; 2010; 10, 1. [DOI: https://dx.doi.org/10.1186/1475-2867-10-1] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20142996]
126. Al-Khafaji, A.S.K.; Marcus, M.W.; Davies, M.P.A.; Risk, J.M.; Shaw, R.J.; Field, J.K.; Liloglou, T. AURKA MRNA Expression Is an Independent Predictor of Poor Prognosis in Patients with Non-Small Cell Lung Cancer. Oncol. Lett.; 2017; 13, pp. 4463-4468. [DOI: https://dx.doi.org/10.3892/ol.2017.6012]
127. Shah, K.N.; Bhatt, R.; Rotow, J.; Rohrberg, J.; Olivas, V.; Wang, V.E.; Hemmati, G.; Martins, M.M.; Maynard, A.; Kuhn, J. et al. Aurora Kinase A Drives the Evolution of Resistance to Third-Generation EGFR Inhibitors in Lung Cancer. Nat. Med.; 2019; 25, pp. 111-118. [DOI: https://dx.doi.org/10.1038/s41591-018-0264-7]
128. Zhang, M.-Y.; Liu, X.-X.; Li, H.; Li, R.; Liu, X.; Qu, Y.-Q. Elevated MRNA Levels of AURKA, CDC20 and TPX2 Are Associated with Poor Prognosis of Smoking Related Lung Adenocarcinoma Using Bioinformatics Analysis. Int. J. Med. Sci.; 2018; 15, pp. 1676-1685. [DOI: https://dx.doi.org/10.7150/ijms.28728] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30588191]
129. Gong, X.; Du, J.; Parsons, S.H.; Merzoug, F.F.; Webster, Y.; Iversen, P.W.; Chio, L.-C.; Van Horn, R.D.; Lin, X.; Blosser, W. et al. Aurora A Kinase Inhibition Is Synthetic Lethal with Loss of the RB1 Tumor Suppressor Gene. Cancer Discov.; 2019; 9, pp. 248-263. [DOI: https://dx.doi.org/10.1158/2159-8290.CD-18-0469] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30373917]
130. Jasinski, P.; Zwolak, P.; Terai, K.; Vogel, R.I.; Borja-Cacho, D.; Dudek, A.Z. MT477 Acts in Tumor Cells as an AURKA Inhibitor and Strongly Induces NRF-2 Signaling. Anticancer Res.; 2011; 31, pp. 1181-1187. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21508363]
131. Dar, A.A.; Goff, L.W.; Majid, S.; Berlin, J.; El-Rifai, W. Aurora Kinase Inhibitors--Rising Stars in Cancer Therapeutics?. Mol. Cancer Ther.; 2010; 9, pp. 268-278. [DOI: https://dx.doi.org/10.1158/1535-7163.MCT-09-0765]
132. Bertran-Alamillo, J.; Cattan, V.; Schoumacher, M.; Codony-Servat, J.; Giménez-Capitán, A.; Cantero, F.; Burbridge, M.; Rodríguez, S.; Teixidó, C.; Roman, R. et al. AURKB as a Target in Non-Small Cell Lung Cancer with Acquired Resistance to Anti-EGFR Therapy. Nat. Commun.; 2019; 10, 1812. [DOI: https://dx.doi.org/10.1038/s41467-019-09734-5]
133. Hirano, H.; Maeda, H.; Yamaguchi, T.; Yokota, S.; Mori, M.; Sakoda, S. Survivin Expression in Lung Cancer: Association with Smoking, Histological Types and Pathological Stages. Oncol. Lett.; 2015; 10, pp. 1456-1462. [DOI: https://dx.doi.org/10.3892/ol.2015.3374]
134. Chen, X.-Q.; Yang, S.; Kang, M.-Q.; Li, Z.-Y.; Lu, H.-S.; Lin, T.-Y. Survivin Expression in Human Lung Cancer and the Influence of Its Downregulation on the Biological Behavior of Human Lung Cancer Cells. Exp. Ther. Med.; 2012; 3, pp. 1010-1014. [DOI: https://dx.doi.org/10.3892/etm.2012.525]
135. Falleni, M.; Pellegrini, C.; Marchetti, A.; Oprandi, B.; Buttitta, F.; Barassi, F.; Santambrogio, L.; Coggi, G.; Bosari, S. Survivin Gene Expression in Early-Stage Non-Small Cell Lung Cancer. J. Pathol.; 2003; 200, pp. 620-626. [DOI: https://dx.doi.org/10.1002/path.1388] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12898598]
136. Haruki, N.; Saito, H.; Harano, T.; Nomoto, S.; Takahashi, T.; Osada, H.; Fujii, Y.; Takahashi, T. Molecular Analysis of the Mitotic Checkpoint Genes BUB1, BUBR1 and BUB3 in Human Lung Cancers. Cancer Lett.; 2001; 162, pp. 201-205. [DOI: https://dx.doi.org/10.1016/S0304-3835(00)00675-3]
137. Rio Frio, T.; Lavoie, J.; Hamel, N.; Geyer, F.C.; Kushner, Y.B.; Novak, D.J.; Wark, L.; Capelli, C.; Reis-Filho, J.S.; Mai, S. et al. Homozygous BUB1B Mutation and Susceptibility to Gastrointestinal Neoplasia. N. Engl. J. Med.; 2010; 363, pp. 2628-2637. [DOI: https://dx.doi.org/10.1056/NEJMoa1006565] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21190457]
138. Chen, H.; Lee, J.; Kljavin, N.M.; Haley, B.; Daemen, A.; Johnson, L.; Liang, Y. Requirement for BUB1B/BUBR1 in Tumor Progression of Lung Adenocarcinoma. Genes Cancer; 2015; 6, pp. 106-118. [DOI: https://dx.doi.org/10.18632/genesandcancer.53]
139. Arsic, N.; Bendris, N.; Peter, M.; Begon-Pescia, C.; Rebouissou, C.; Gadéa, G.; Bouquier, N.; Bibeau, F.; Lemmers, B.; Blanchard, J.M. A Novel Function for Cyclin A2: Control of Cell Invasion via RhoA Signaling. J. Cell Biol.; 2012; 196, pp. 147-162. [DOI: https://dx.doi.org/10.1083/jcb.201102085]
140. Bendris, N.; Arsic, N.; Lemmers, B.; Blanchard, J.M. Cyclin A2, Rho GTPases and EMT. Small GTPases; 2012; 3, pp. 225-228. [DOI: https://dx.doi.org/10.4161/sgtp.20791]
141. Ruan, J.S.; Zhou, H.; Yang, L.; Wang, L.; Jiang, Z.S.; Wang, S.M. CCNA2 Facilitates Epithelial-to-Mesenchymal Transition via the Integrin Avβ3 Signaling in NSCLC. Int. J. Clin. Exp. Pathol.; 2017; 10, pp. 8324-8333.
142. Soria, J.C.; Jang, S.J.; Khuri, F.R.; Hassan, K.; Liu, D.; Hong, W.K.; Mao, L. Overexpression of Cyclin B1 in Early-Stage Non-Small Cell Lung Cancer and Its Clinical Implication. Cancer Res.; 2000; 60, pp. 4000-4004. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10945597]
143. Winters, Z.E.; Hunt, N.C.; Bradburn, M.J.; Royds, J.A.; Turley, H.; Harris, A.L.; Norbury, C.J. Subcellular Localisation of Cyclin B, Cdc2 and P21(WAF1/CIP1) in Breast Cancer. Association with Prognosis. Eur. J. Cancer Oxf. Engl. 1990; 2001; 37, pp. 2405-2412. [DOI: https://dx.doi.org/10.1016/s0959-8049(01)00327-6]
144. Müllers, E.; Silva Cascales, H.; Burdova, K.; Macurek, L.; Lindqvist, A. Residual Cdk1/2 Activity after DNA Damage Promotes Senescence. Aging Cell; 2017; 16, pp. 575-584. [DOI: https://dx.doi.org/10.1111/acel.12588]
145. Ni, Z.; Wang, X.; Zhang, T.; Li, L.; Li, J. Comprehensive Analysis of Differential Expression Profiles Reveals Potential Biomarkers Associated with the Cell Cycle and Regulated by P53 in Human Small Cell Lung Cancer. Exp. Ther. Med.; 2018; 15, pp. 3273-3282. [DOI: https://dx.doi.org/10.3892/etm.2018.5833] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29545845]
146. Pines, J.; Hunter, T. Isolation of a Human Cyclin CDNA: Evidence for Cyclin MRNA and Protein Regulation in the Cell Cycle and for Interaction with P34cdc2. Cell; 1989; 58, pp. 833-846. [DOI: https://dx.doi.org/10.1016/0092-8674(89)90936-7]
147. Brandeis, M.; Rosewell, I.; Carrington, M.; Crompton, T.; Jacobs, M.A.; Kirk, J.; Gannon, J.; Hunt, T. Cyclin B2-Null Mice Develop Normally and Are Fertile Whereas Cyclin B1-Null Mice Die in Utero. Proc. Natl. Acad. Sci. USA; 1998; 95, pp. 4344-4349. [DOI: https://dx.doi.org/10.1073/pnas.95.8.4344] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9539739]
148. Qian, X.; Song, X.; He, Y.; Yang, Z.; Sun, T.; Wang, J.; Zhu, G.; Xing, W.; You, C. CCNB2 Overexpression Is a Poor Prognostic Biomarker in Chinese NSCLC Patients. Biomed. Pharmacother. Biomed. Pharmacother.; 2015; 74, pp. 222-227. [DOI: https://dx.doi.org/10.1016/j.biopha.2015.08.004]
149. Kato, T.; Daigo, Y.; Aragaki, M.; Ishikawa, K.; Sato, M.; Kaji, M. Overexpression of CDC20 Predicts Poor Prognosis in Primary Non-Small Cell Lung Cancer Patients. J. Surg. Oncol.; 2012; 106, pp. 423-430. [DOI: https://dx.doi.org/10.1002/jso.23109]
150. Zhang, W.; Gong, W.; Ai, H.; Tang, J.; Shen, C. Gene Expression Analysis of Lung Adenocarcinoma and Matched Adjacent Non-Tumor Lung Tissue. Tumori J.; 2014; 100, pp. 338-345. [DOI: https://dx.doi.org/10.1700/1578.17222]
151. Kidokoro, T.; Tanikawa, C.; Furukawa, Y.; Katagiri, T.; Nakamura, Y.; Matsuda, K. CDC20, a Potential Cancer Therapeutic Target, Is Negatively Regulated by P53. Oncogene; 2008; 27, pp. 1562-1571. [DOI: https://dx.doi.org/10.1038/sj.onc.1210799]
152. Shi, R.; Sun, Q.; Sun, J.; Wang, X.; Xia, W.; Dong, G.; Wang, A.; Jiang, F.; Xu, L. Cell Division Cycle 20 Overexpression Predicts Poor Prognosis for Patients with Lung Adenocarcinoma. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med.; 2017; 39, 1010428317692233. [DOI: https://dx.doi.org/10.1177/1010428317692233]
153. Veena, V.; Rajan, K.; Saritha, V.; George, G.; Chandramohan, K.; Jayasree, K.; Thara, S.; Sujathan, K. DNA Replication Licensing Proteins for Early Detection of Lung Cancer. Asian Pac. J. Cancer Prev. APJCP; 2017; 18, pp. 3041-3047. [DOI: https://dx.doi.org/10.22034/APJCP.2017.18.11.3041]
154. Wu, X.; Li, S.; Hu, X.; Xiang, X.; Halloran, M.; Yang, L.; Williams, T.M.; Houghton, P.J.; Shen, C.; He, Z. MTOR Signaling Upregulates CDC6 via Suppressing MiR-3178 and Promotes the Loading of DNA Replication Helicase. Sci. Rep.; 2019; 9, 9805. [DOI: https://dx.doi.org/10.1038/s41598-019-46052-8]
155. Allera-Moreau, C.; Rouquette, I.; Lepage, B.; Oumouhou, N.; Walschaerts, M.; Leconte, E.; Schilling, V.; Gordien, K.; Brouchet, L.; Delisle, M.B. et al. DNA Replication Stress Response Involving PLK1, CDC6, POLQ, RAD51 and CLASPIN Upregulation Prognoses the Outcome of Early/Mid-Stage Non-Small Cell Lung Cancer Patients. Oncogenesis; 2012; 1, e30. [DOI: https://dx.doi.org/10.1038/oncsis.2012.29] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23552402]
156. Gamell, C.; Gulati, T.; Solomon, B.; Haupt, S.; Haupt, Y. Uncovering a Novel Pathway for P16 Silencing: Therapeutic Implications for Lung Cancer. Mol. Cell. Oncol.; 2017; 4, e1299273. [DOI: https://dx.doi.org/10.1080/23723556.2017.1299273] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29057301]
157. Putkey, F.R.; Cramer, T.; Morphew, M.K.; Silk, A.D.; Johnson, R.S.; McIntosh, J.R.; Cleveland, D.W. Unstable Kinetochore-Microtubule Capture and Chromosomal Instability Following Deletion of CENP-E. Dev. Cell; 2002; 3, pp. 351-365. [DOI: https://dx.doi.org/10.1016/S1534-5807(02)00255-1]
158. Weng, M.-T.; Lee, J.-H.; Wei, S.-C.; Li, Q.; Shahamatdar, S.; Hsu, D.; Schetter, A.J.; Swatkoski, S.; Mannan, P.; Garfield, S. et al. Evolutionarily Conserved Protein ERH Controls CENP-E MRNA Splicing and Is Required for the Survival of KRAS Mutant Cancer Cells. Proc. Natl. Acad. Sci. USA; 2012; 109, pp. E3659-E3667. [DOI: https://dx.doi.org/10.1073/pnas.1207673110] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23236152]
159. Song, Y.-J.; Tan, J.; Gao, X.-H.; Wang, L.-X. Integrated Analysis Reveals Key Genes with Prognostic Value in Lung Adenocarcinoma. Cancer Manag. Res.; 2018; 10, pp. 6097-6108. [DOI: https://dx.doi.org/10.2147/CMAR.S168636] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30538558]
160. Huang, R.; Gao, L. Identification of Potential Diagnostic and Prognostic Biomarkers in Non-Small Cell Lung Cancer Based on Microarray Data. Oncol. Lett.; 2018; 15, pp. 6436-6442. [DOI: https://dx.doi.org/10.3892/ol.2018.8153]
161. Hsu, N.-Y.; Wang, H.-C.; Wang, C.-H.; Chiu, C.-F.; Tseng, H.-C.; Liang, S.-Y.; Tsai, C.-W.; Lin, C.-C.; Bau, D.-T. Lung Cancer Susceptibility and Genetic Polymorphisms of Exo1 Gene in Taiwan. Anticancer Res.; 2009; 29, pp. 725-730. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19331228]
162. Jin, G.; Wang, H.; Hu, Z.; Liu, H.; Sun, W.; Ma, H.; Chen, D.; Miao, R.; Tian, T.; Jin, L. et al. Potentially Functional Polymorphisms of EXO1 and Risk of Lung Cancer in a Chinese Population: A Case-Control Analysis. Lung Cancer Amst. Neth.; 2008; 60, pp. 340-346. [DOI: https://dx.doi.org/10.1016/j.lungcan.2007.11.003]
163. Tang, C.; Jiang, Y.; Shao, W.; Shi, W.; Gao, X.; Qin, W.; Jiang, T.; Wang, F.; Feng, S. Abnormal Expression of FOSB Correlates with Tumor Progression and Poor Survival in Patients with Gastric Cancer. Int. J. Oncol.; 2016; 49, pp. 1489-1496. [DOI: https://dx.doi.org/10.3892/ijo.2016.3661]
164. Duan, F.; Song, C.; Dai, L.; Cui, S.; Zhang, X.; Zhao, X. The Significance of Exo1 K589E Polymorphism on Cancer Susceptibility: Evidence Based on a Meta-Analysis. PLoS ONE; 2014; 9, e96764. [DOI: https://dx.doi.org/10.1371/journal.pone.0096764]
165. Yang, S.-Y.; Hsiung, C.-N.; Li, Y.-J.; Chang, G.-C.; Tsai, Y.-H.; Chen, K.-Y.; Huang, M.-S.; Su, W.-C.; Chen, Y.-M.; Hsiung, C.A. et al. Fanconi Anemia Genes in Lung Adenocarcinoma- a Pathway-Wide Study on Cancer Susceptibility. J. Biomed. Sci.; 2016; 23, 23. [DOI: https://dx.doi.org/10.1186/s12929-016-0240-9] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26842001]
166. Smogorzewska, A.; Matsuoka, S.; Vinciguerra, P.; McDonald, E.R.; Hurov, K.E.; Luo, J.; Ballif, B.A.; Gygi, S.P.; Hofmann, K.; D’Andrea, A.D. et al. Identification of the FANCI Protein, a Monoubiquitinated FANCD2 Paralog Required for DNA Repair. Cell; 2007; 129, pp. 289-301. [DOI: https://dx.doi.org/10.1016/j.cell.2007.03.009] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17412408]
167. Somyajit, K.; Subramanya, S.; Nagaraju, G. RAD51C: A Novel Cancer Susceptibility Gene Is Linked to Fanconi Anemia and Breast Cancer. Carcinogenesis; 2010; 31, pp. 2031-2038. [DOI: https://dx.doi.org/10.1093/carcin/bgq210] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20952512]
168. Howlett, N.G.; Harney, J.A.; Rego, M.A.; Kolling, F.W.; Glover, T.W. Functional Interaction between the Fanconi Anemia D2 Protein and Proliferating Cell Nuclear Antigen (PCNA) via a Conserved Putative PCNA Interaction Motif. J. Biol. Chem.; 2009; 284, pp. 28935-28942. [DOI: https://dx.doi.org/10.1074/jbc.M109.016352] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19704162]
169. Stevens, L.E.; Cheung, W.K.C.; Adua, S.J.; Arnal-Estapé, A.; Zhao, M.; Liu, Z.; Brewer, K.; Herbst, R.S.; Nguyen, D.X. Extracellular Matrix Receptor Expression in Subtypes of Lung Adenocarcinoma Potentiates Outgrowth of Micrometastases. Cancer Res.; 2017; 77, pp. 1905-1917. [DOI: https://dx.doi.org/10.1158/0008-5472.CAN-16-1978]
170. Stevens, L.E.; Zhao, M.; Liu, Z.Z.; Nguyen, D.X. Abstract 2269: A Novel Molecular Subset of Metastatic Lung Adenocarcinoma Is Defined by the Function of the Proteoglycan Receptor HMMR. Cancer Res.; 2015; 75, 2269. [DOI: https://dx.doi.org/10.1158/1538-7445.AM2015-2269]
171. Blangy, A.; Lane, H.A.; d’Hérin, P.; Harper, M.; Kress, M.; Nigg, E.A. Phosphorylation by P34cdc2 Regulates Spindle Association of Human Eg5, a Kinesin-Related Motor Essential for Bipolar Spindle Formation in Vivo. Cell; 1995; 83, pp. 1159-1169. [DOI: https://dx.doi.org/10.1016/0092-8674(95)90142-6]
172. Koffa, M.D.; Casanova, C.M.; Santarella, R.; Köcher, T.; Wilm, M.; Mattaj, I.W. HURP Is Part of a Ran-Dependent Complex Involved in Spindle Formation. Curr. Biol.; 2006; 16, pp. 743-754. [DOI: https://dx.doi.org/10.1016/j.cub.2006.03.056]
173. Schneider, M.A.; Christopoulos, P.; Muley, T.; Warth, A.; Klingmueller, U.; Thomas, M.; Herth, F.J.F.; Dienemann, H.; Mueller, N.S.; Theis, F. et al. AURKA, DLGAP5, TPX2, KIF11 and CKAP5: Five Specific Mitosis-Associated Genes Correlate with Poor Prognosis for Non-Small Cell Lung Cancer Patients. Int. J. Oncol.; 2017; 50, pp. 365-372. [DOI: https://dx.doi.org/10.3892/ijo.2017.3834]
174. Kato, T.; Lee, D.; Huang, H.; Cruz, W.; Ujiie, H.; Fujino, K.; Wada, H.; Patel, P.; Hu, H.-P.; Hirohashi, K. et al. Personalized SiRNA-Nanoparticle Systemic Therapy Using Metastatic Lymph Node Specimens Obtained with EBUS-TBNA in Lung Cancer. Mol. Cancer Res. MCR; 2018; 16, pp. 47-57. [DOI: https://dx.doi.org/10.1158/1541-7786.MCR-16-0341]
175. Kato, T.; Lee, D.; Wu, L.; Patel, P.; Young, J.A.; Wada, H.; Hu, H.-P.; Ujiie, H.; Kaji, M.; Kano, S. et al. Kinesin Family Members KIF11 and KIF23 as Potential Therapeutic Targets in Malignant Pleural Mesothelioma. Int. J. Oncol.; 2016; 49, pp. 448-456. [DOI: https://dx.doi.org/10.3892/ijo.2016.3566] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27279560]
176. Kato, T.; Wada, H.; Patel, P.; Hu, H.-P.; Lee, D.; Ujiie, H.; Hirohashi, K.; Nakajima, T.; Sato, M.; Kaji, M. et al. Overexpression of KIF23 Predicts Clinical Outcome in Primary Lung Cancer Patients. Lung Cancer Amst. Neth.; 2016; 92, pp. 53-61. [DOI: https://dx.doi.org/10.1016/j.lungcan.2015.11.018] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26775597]
177. Vikberg, A.-L.; Vooder, T.; Lokk, K.; Annilo, T.; Golovleva, I. Mutation Analysis and Copy Number Alterations of KIF23 in Non-Small-Cell Lung Cancer Exhibiting KIF23 over-Expression. OncoTargets Ther.; 2017; 10, pp. 4969-4979. [DOI: https://dx.doi.org/10.2147/OTT.S138420] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29066916]
178. Li, Y.; Gu, J.; Xu, F.; Zhu, Q.; Ge, D.; Lu, C. Transcriptomic and Functional Network Features of Lung Squamous Cell Carcinoma through Integrative Analysis of GEO and TCGA Data. Sci. Rep.; 2018; 8, 15834. [DOI: https://dx.doi.org/10.1038/s41598-018-34160-w]
179. Bai, Y.; Xiong, L.; Zhu, M.; Yang, Z.; Zhao, J.; Tang, H. Co-Expression Network Analysis Identified KIF2C in Association with Progression and Prognosis in Lung Adenocarcinoma. Cancer Biomark. Sect. Dis. Markers; 2019; 24, pp. 371-382. [DOI: https://dx.doi.org/10.3233/CBM-181512]
180. Shi, Y.-X.; Zhu, T.; Zou, T.; Zhuo, W.; Chen, Y.-X.; Huang, M.-S.; Zheng, W.; Wang, C.-J.; Li, X.; Mao, X.-Y. et al. Prognostic and Predictive Values of CDK1 and MAD2L1 in Lung Adenocarcinoma. Oncotarget; 2016; 7, pp. 85235-85243. [DOI: https://dx.doi.org/10.18632/oncotarget.13252]
181. Wei, X.; Zhang, K.; Qin, H.; Zhu, J.; Qin, Q.; Yu, Y.; Wang, H. GMDS Knockdown Impairs Cell Proliferation and Survival in Human Lung Adenocarcinoma. BMC Cancer; 2018; 18, 600. [DOI: https://dx.doi.org/10.1186/s12885-018-4524-1]
182. Mincheva, A.; Todorov, I.; Werner, D.; Fink, T.M.; Lichter, P. The Human Gene for Nuclear Protein BM28 (CDCL1), a New Member of the Early S-Phase Family of Proteins, Maps to Chromosome Band 3q21. Cytogenet. Cell Genet.; 1994; 65, pp. 276-277. [DOI: https://dx.doi.org/10.1159/000133647]
183. Yabuta, N.; Kajimura, N.; Mayanagi, K.; Sato, M.; Gotow, T.; Uchiyama, Y.; Ishimi, Y.; Nojima, H. Mammalian Mcm2/4/6/7 Complex Forms a Toroidal Structure. Genes Cells; 2003; 8, pp. 413-421. [DOI: https://dx.doi.org/10.1046/j.1365-2443.2003.00645.x]
184. Cheung, C.H.Y.; Hsu, C.-L.; Chen, K.-P.; Chong, S.-T.; Wu, C.-H.; Huang, H.-C.; Juan, H.-F. MCM2-Regulated Functional Networks in Lung Cancer by Multi-Dimensional Proteomic Approach. Sci. Rep.; 2017; 7, 13302. [DOI: https://dx.doi.org/10.1038/s41598-017-13440-x]
185. Yang, J.; Ramnath, N.; Moysich, K.B.; Asch, H.L.; Swede, H.; Alrawi, S.J.; Huberman, J.; Geradts, J.; Brooks, J.S.; Tan, D. Prognostic Significance of MCM2, Ki-67 and Gelsolin in Non-Small Cell Lung Cancer. BMC Cancer; 2006; 6, 203. [DOI: https://dx.doi.org/10.1186/1471-2407-6-203] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16882345]
186. Tan, D.F.; Huberman, J.A.; Hyland, A.; Loewen, G.M.; Brooks, J.S.; Beck, A.F.; Todorov, I.T.; Bepler, G. MCM2—A Promising Marker for Premalignant Lesions of the Lung: A Cohort Study. BMC Cancer; 2001; 1, 6. [DOI: https://dx.doi.org/10.1186/1471-2407-1-6] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11472637]
187. Kikuchi, J.; Kinoshita, I.; Shimizu, Y.; Kikuchi, E.; Takeda, K.; Aburatani, H.; Oizumi, S.; Konishi, J.; Kaga, K.; Matsuno, Y. et al. Minichromosome Maintenance (MCM) Protein 4 as a Marker for Proliferation and Its Clinical and Clinicopathological Significance in Non-Small Cell Lung Cancer. Lung Cancer Amst. Neth.; 2011; 72, pp. 229-237. [DOI: https://dx.doi.org/10.1016/j.lungcan.2010.08.020] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20884074]
188. Choy, B.; LaLonde, A.; Que, J.; Wu, T.; Zhou, Z. MCM4 and MCM7, Potential Novel Proliferation Markers, Significantly Correlated with Ki-67, Bmi1, and Cyclin E Expression in Esophageal Adenocarcinoma, Squamous Cell Carcinoma, and Precancerous Lesions. Hum. Pathol.; 2016; 57, pp. 126-135. [DOI: https://dx.doi.org/10.1016/j.humpath.2016.07.013]
189. Warth, A.; Cortis, J.; Soltermann, A.; Meister, M.; Budczies, J.; Stenzinger, A.; Goeppert, B.; Thomas, M.; Herth, F.J.F.; Schirmacher, P. et al. Tumour Cell Proliferation (Ki-67) in Non-Small Cell Lung Cancer: A Critical Reappraisal of Its Prognostic Role. Br. J. Cancer; 2014; 111, pp. 1222-1229. [DOI: https://dx.doi.org/10.1038/bjc.2014.402]
190. Sadasivam, S.; DeCaprio, J.A. The DREAM Complex: Master Coordinator of Cell Cycle Dependent Gene Expression. Nat. Rev. Cancer; 2013; 13, 585. [DOI: https://dx.doi.org/10.1038/nrc3556]
191. Fan, X.; Wang, Y.; Jiang, T.; Cai, W.; Jin, Y.; Niu, Y.; Zhu, H.; Bu, Y. B-Myb Mediates Proliferation and Migration of Non-Small-Cell Lung Cancer via Suppressing IGFBP3. Int. J. Mol. Sci.; 2018; 19, 1479. [DOI: https://dx.doi.org/10.3390/ijms19051479]
192. Zhang, S.; Li, M.; Ji, H.; Fang, Z. Landscape of Transcriptional Deregulation in Lung Cancer. BMC Genom.; 2018; 19, 435. [DOI: https://dx.doi.org/10.1186/s12864-018-4828-1]
193. Furth, P.A.; St Onge, L.; Böger, H.; Gruss, P.; Gossen, M.; Kistner, A.; Bujard, H.; Hennighausen, L. Temporal Control of Gene Expression in Transgenic Mice by a Tetracycline-Responsive Promoter. Proc. Natl. Acad. Sci. USA; 1994; 91, pp. 9302-9306. [DOI: https://dx.doi.org/10.1073/pnas.91.20.9302]
194. Zhou, W.; Yang, Y.; Xia, J.; Wang, H.; Salama, M.E.; Xiong, W.; Xu, H.; Shetty, S.; Chen, T.; Zeng, Z. et al. NEK2 Induces Drug-Resistance Mainly through Activation of Efflux Drug Pumps and Is Associated with Poor Prognosis in Myeloma and Other Cancers. Cancer Cell; 2013; 23, pp. 48-62. [DOI: https://dx.doi.org/10.1016/j.ccr.2012.12.001]
195. Bidkhori, G.; Narimani, Z.; Hosseini Ashtiani, S.; Moeini, A.; Nowzari-Dalini, A.; Masoudi-Nejad, A. Reconstruction of an Integrated Genome-Scale Co-Expression Network Reveals Key Modules Involved in Lung Adenocarcinoma. PLoS ONE; 2013; 8, e67552. [DOI: https://dx.doi.org/10.1371/journal.pone.0067552] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23874428]
196. Zhong, X.; Guan, X.; Liu, W.; Zhang, L. Aberrant Expression of NEK2 and Its Clinical Significance in Non-Small Cell Lung Cancer. Oncol. Lett.; 2014; 8, pp. 1470-1476. [DOI: https://dx.doi.org/10.3892/ol.2014.2396] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25202351]
197. Kaowinn, S.; Oh, S.; Moon, J.; Yoo, A.Y.; Kang, H.Y.; Lee, M.R.; Kim, J.E.; Hwang, D.Y.; Youn, S.E.; Koh, S.S. et al. CGK062, a Small Chemical Molecule, Inhibits Cancer Upregulated Gene 2-Induced Oncogenesis through NEK2 and β-Catenin. Int. J. Oncol.; 2019; 54, pp. 1295-1305. [DOI: https://dx.doi.org/10.3892/ijo.2019.4724] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30968157]
198. Zhang, J.; Zhan, X.; Furqan, M.; Abu Hejleh, T.; Clamon, G.H.; Ren, S.; Zhan, F. NEK2 as a Prognostic Marker and Therapeutic Target in Adenocarcinoma of the Lung. J. Clin. Oncol.; 2016; 34, e23282. [DOI: https://dx.doi.org/10.1200/JCO.2016.34.15_suppl.e23282]
199. Das, T.K.; Dana, D.; Paroly, S.S.; Perumal, S.K.; Singh, S.; Jhun, H.; Pendse, J.; Cagan, R.L.; Talele, T.T.; Kumar, S. Centrosomal Kinase Nek2 Cooperates with Oncogenic Pathways to Promote Metastasis. Oncogenesis; 2013; 2, e69. [DOI: https://dx.doi.org/10.1038/oncsis.2013.34]
200. Zhong, X.; Guan, X.; Dong, Q.; Yang, S.; Liu, W.; Zhang, L. Examining Nek2 as a Better Proliferation Marker in Non-Small Cell Lung Cancer Prognosis. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med.; 2014; 35, pp. 7155-7162. [DOI: https://dx.doi.org/10.1007/s13277-014-1935-8]
201. Wen, P.; Chidanguro, T.; Shi, Z.; Gu, H.; Wang, N.; Wang, T.; Li, Y.; Gao, J. Identification of Candidate Biomarkers and Pathways Associated with SCLC by Bioinformatics Analysis. Mol. Med. Rep.; 2018; 18, pp. 1538-1550. [DOI: https://dx.doi.org/10.3892/mmr.2018.9095]
202. Lu, C.; Chen, H.; Shan, Z.; Yang, L. Identification of Differentially Expressed Genes between Lung Adenocarcinoma and Lung Squamous Cell Carcinoma by Gene Expression Profiling. Mol. Med. Rep.; 2016; 14, pp. 1483-1490. [DOI: https://dx.doi.org/10.3892/mmr.2016.5420]
203. Erdogan, E.; Klee, E.W.; Thompson, E.A.; Fields, A.P. Meta-Analysis of Oncogenic Protein Kinase Cι Signaling in Lung Adenocarcinoma. Clin. Cancer Res.; 2009; 15, pp. 1527-1533. [DOI: https://dx.doi.org/10.1158/1078-0432.CCR-08-2459]
204. Song, L.; Dai, Z.; Zhang, S.; Zhang, H.; Liu, C.; Ma, X.; Liu, D.; Zan, Y.; Yin, X. MicroRNA-1179 Suppresses Cell Growth and Invasion by Targeting Sperm-Associated Antigen 5-Mediated Akt Signaling in Human Non-Small Cell Lung Cancer. Biochem. Biophys. Res. Commun.; 2018; 504, pp. 164-170. [DOI: https://dx.doi.org/10.1016/j.bbrc.2018.08.149]
205. Wang, T.; Li, K.; Song, H.; Xu, D.; Liao, Y.; Jing, B.; Guo, W.; Hu, M.; Kuang, Y.; Sun, B. et al. P53 Suppression Is Essential for Oncogenic SPAG5 Upregulation in Lung Adenocarcinoma. Biochem. Biophys. Res. Commun.; 2019; 513, pp. 319-325. [DOI: https://dx.doi.org/10.1016/j.bbrc.2019.03.198] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30955859]
206. Välk, K.; Vooder, T.; Kolde, R.; Reintam, M.-A.; Petzold, C.; Vilo, J.; Metspalu, A. Gene Expression Profiles of Non-Small Cell Lung Cancer: Survival Prediction and New Biomarkers. Oncology; 2010; 79, pp. 283-292. [DOI: https://dx.doi.org/10.1159/000322116] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21412013]
207. Dingemans, A.C.; van Ark-Otte, J.; Span, S.; Scagliotti, G.V.; van der Valk, P.; Postmus, P.E.; Giaccone, G. Topoisomerase IIalpha and Other Drug Resistance Markers in Advanced Non-Small Cell Lung Cancer. Lung Cancer Amst. Neth.; 2001; 32, pp. 117-128. [DOI: https://dx.doi.org/10.1016/S0169-5002(00)00224-5]
208. Hou, G.-X.; Liu, P.; Yang, J.; Wen, S. Mining Expression and Prognosis of Topoisomerase Isoforms in Non-Small-Cell Lung Cancer by Using Oncomine and Kaplan–Meier Plotter. PLoS ONE; 2017; 12, e0174515. [DOI: https://dx.doi.org/10.1371/journal.pone.0174515]
209. Neubauer, E.; Wirtz, R.M.; Kaemmerer, D.; Athelogou, M.; Schmidt, L.; Sänger, J.; Lupp, A. Comparative Evaluation of Three Proliferation Markers, Ki-67, TOP2A, and RacGAP1, in Bronchopulmonary Neuroendocrine Neoplasms: Issues and Prospects. Oncotarget; 2016; 7, pp. 41959-41973. [DOI: https://dx.doi.org/10.18632/oncotarget.9747]
210. Van Gijn, S.E.; Wierenga, E.; van den Tempel, N.; Kok, Y.P.; Heijink, A.M.; Spierings, D.C.J.; Foijer, F.; van Vugt, M.A.T.M.; Fehrmann, R.S.N. TPX2/Aurora Kinase A Signaling as a Potential Therapeutic Target in Genomically Unstable Cancer Cells. Oncogene; 2019; 38, pp. 852-867. [DOI: https://dx.doi.org/10.1038/s41388-018-0470-2] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30177840]
211. Du, L.; Zhao, Z.; Suraokar, M.; Shelton, S.S.; Ma, X.; Hsiao, T.-H.; Minna, J.D.; Wistuba, I.; Pertsemlidis, A. LMO1 Functions as an Oncogene by Regulating TTK Expression and Correlates with Neuroendocrine Differentiation of Lung Cancer. Oncotarget; 2018; 9, pp. 29601-29618. [DOI: https://dx.doi.org/10.18632/oncotarget.25642] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30038707]
212. Chen, X.; Yu, C.; Gao, J.; Zhu, H.; Cui, B.; Zhang, T.; Zhou, Y.; Liu, Q.; He, H.; Xiao, R. et al. A Novel USP9X Substrate TTK Contributes to Tumorigenesis in Non-Small-Cell Lung Cancer. Theranostics; 2018; 8, pp. 2348-2360. [DOI: https://dx.doi.org/10.7150/thno.22901]
213. Zheng, L.; Chen, Z.; Kawakami, M.; Chen, Y.; Roszik, J.; Mustachio, L.M.; Kurie, J.M.; Villalobos, P.; Lu, W.; Behrens, C. et al. Tyrosine Threonine Kinase Inhibition Eliminates Lung Cancers by Augmenting Apoptosis and Polyploidy. Mol. Cancer Ther.; 2019; 18, pp. 1775-1786. [DOI: https://dx.doi.org/10.1158/1535-7163.MCT-18-0864]
214. Mills, G.B.; Schmandt, R.; McGill, M.; Amendola, A.; Hill, M.; Jacobs, K.; May, C.; Rodricks, A.M.; Campbell, S.; Hogg, D. Expression of TTK, a Novel Human Protein Kinase, Is Associated with Cell Proliferation. J. Biol. Chem.; 1992; 267, pp. 16000-16006. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/1639825][DOI: https://dx.doi.org/10.1016/S0021-9258(19)49633-6]
215. Yuan, W.; Xie, S.; Wang, M.; Pan, S.; Huang, X.; Xiong, M.; Xiao, R.; Xiong, J.; Zhang, Q.; Shao, L. Bioinformatic Analysis of Prognostic Value of ZW10 Interacting Protein in Lung Cancer. OncoTargets Ther.; 2018; 11, pp. 1683-1695. [DOI: https://dx.doi.org/10.2147/OTT.S149012] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29615843]
216. Choi, K.H.; Shin, C.H.; Lee, W.J.; Ji, H.; Kim, H.H. Dual-Strand Tumor Suppressor MiR-193b-3p and -5p Inhibit Malignant Phenotypes of Lung Cancer by Suppressing Their Common Targets. Biosci. Rep.; 2019; 39, BSR20190634. [DOI: https://dx.doi.org/10.1042/BSR20190634] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31262974]
217. Li, Y.; Zhao, L.; Zhao, P.; Liu, Z. Long Non-Coding RNA LINC00641 Suppresses Non-Small-Cell Lung Cancer by Sponging MiR-424-5p to Upregulate PLSCR4. Cancer Biomark. Sect. Dis. Markers; 2019; 26, pp. 79-91. [DOI: https://dx.doi.org/10.3233/CBM-190142] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31322545]
218. Chen, Y.-C.; Hsiao, C.-C.; Chen, K.-D.; Hung, Y.-C.; Wu, C.-Y.; Lie, C.-H.; Liu, S.-F.; Sung, M.-T.; Chen, C.-J.; Wang, T.-Y. et al. Peripheral Immune Cell Gene Expression Changes in Advanced Non-Small Cell Lung Cancer Patients Treated with First Line Combination Chemotherapy. PLoS ONE; 2013; 8, e57053. [DOI: https://dx.doi.org/10.1371/journal.pone.0057053] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23451142]
219. Lin, J.; Marquardt, G.; Mullapudi, N.; Wang, T.; Han, W.; Shi, M.; Keller, S.; Zhu, C.; Locker, J.; Spivack, S.D. Lung Cancer Transcriptomes Refined with Laser Capture Microdissection. Am. J. Pathol.; 2014; 184, pp. 2868-2884. [DOI: https://dx.doi.org/10.1016/j.ajpath.2014.06.028] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25128906]
220. Orvis, T.; Hepperla, A.; Walter, V.; Song, S.; Simon, J.; Parker, J.; Wilkerson, M.D.; Desai, N.; Major, M.B.; Hayes, D.N. et al. BRG1/SMARCA4 Inactivation Promotes Non-Small Cell Lung Cancer Aggressiveness by Altering Chromatin Organization. Cancer Res.; 2014; 74, pp. 6486-6498. [DOI: https://dx.doi.org/10.1158/0008-5472.CAN-14-0061]
221. Yang, Z.; Zhuan, B.; Yan, Y.; Jiang, S.; Wang, T. Integrated Analyses of Copy Number Variations and Gene Differential Expression in Lung Squamous-Cell Carcinoma. Biol. Res.; 2015; 48, 47. [DOI: https://dx.doi.org/10.1186/s40659-015-0038-3]
222. Wang, W.; Dong, M.; Cui, J.; Xu, F.; Yan, C.; Ma, C.; Yi, L.; Tang, W.; Dong, J.; Wei, Y. NME4 May Enhance Non-small Cell Lung Cancer Progression by Overcoming Cell Cycle Arrest and Promoting Cellular Proliferation. Mol. Med. Rep.; 2019; 20, pp. 1629-1636. [DOI: https://dx.doi.org/10.3892/mmr.2019.10413]
223. Lu, Q.; Xie, Z.; Yan, C.; Ding, Y.; Ma, Z.; Wu, S.; Qiu, Y.; Cossette, S.M.; Bordas, M.; Ramchandran, R. et al. SNRK (Sucrose Nonfermenting 1-Related Kinase) Promotes Angiogenesis In Vivo. Arterioscler. Thromb. Vasc. Biol.; 2018; 38, pp. 373-385. [DOI: https://dx.doi.org/10.1161/ATVBAHA.117.309834]
224. Zheng, Y.; Miyamoto, D.T.; Wittner, B.S.; Sullivan, J.P.; Aceto, N.; Jordan, N.V.; Yu, M.; Karabacak, N.M.; Comaills, V.; Morris, R. et al. Expression of β-Globin by Cancer Cells Promotes Cell Survival during Blood-Borne Dissemination. Nat. Commun.; 2017; 8, 14344. [DOI: https://dx.doi.org/10.1038/ncomms14344]
225. Casciaro, M.; Cardia, R.; Di Salvo, E.; Tuccari, G.; Ieni, A.; Gangemi, S. Interleukin-33 Involvement in Nonsmall Cell Lung Carcinomas: An Update. Biomolecules; 2019; 9, 203. [DOI: https://dx.doi.org/10.3390/biom9050203] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31130612]
226. Wang, C.; Chen, Z.; Bu, X.; Han, Y.; Shan, S.; Ren, T.; Song, W. IL-33 Signaling Fuels Outgrowth and Metastasis of Human Lung Cancer. Biochem. Biophys. Res. Commun.; 2016; 479, pp. 461-468. [DOI: https://dx.doi.org/10.1016/j.bbrc.2016.09.081] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27644880]
227. Kim, M.S.; Kim, E.; Heo, J.-S.; Bae, D.-J.; Lee, J.-U.W.; Lee, T.-H.; Lee, H.J.; Chang, H.S.; Park, J.S.; Jang, A.S. et al. Circulating IL-33 Level Is Associated with the Progression of Lung Cancer. Lung Cancer Amst. Neth.; 2015; 90, pp. 346-351. [DOI: https://dx.doi.org/10.1016/j.lungcan.2015.08.011]
228. Wang, K.; Shan, S.; Yang, Z.; Gu, X.; Wang, Y.; Wang, C.; Ren, T. IL-33 Blockade Suppresses Tumor Growth of Human Lung Cancer through Direct and Indirect Pathways in a Preclinical Model. Oncotarget; 2017; 8, pp. 68571-68582. [DOI: https://dx.doi.org/10.18632/oncotarget.19786]
229. Hu, L.-A.; Fu, Y.; Zhang, D.-N.; Zhang, J. Serum IL-33 as a Diagnostic and Prognostic Marker in Non-Small Cell Lung Cancer. Asian Pac. J. Cancer Prev.; 2013; 14, pp. 2563-2566. [DOI: https://dx.doi.org/10.7314/APJCP.2013.14.4.2563] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23725175]
230. Jo, U.; Whang, Y.M.; Kim, H.K.; Kim, Y.H. AKAP12alpha Is Associated with Promoter Methylation in Lung Cancer. Cancer Res. Treat.; 2006; 38, pp. 144-151. [DOI: https://dx.doi.org/10.4143/crt.2006.38.3.144] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19771275]
231. Tessema, M.; Willink, R.; Do, K.; Yu, Y.Y.; Yu, W.; Machida, E.O.; Brock, M.; Van Neste, L.; Stidley, C.A.; Baylin, S.B. et al. Promoter Methylation of Genes in and around the Candidate Lung Cancer Susceptibility Locus 6q23-25. Cancer Res.; 2008; 68, pp. 1707-1714. [DOI: https://dx.doi.org/10.1158/0008-5472.CAN-07-6325] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18339850]
232. Chen, K.-Y.; Hsiao, C.-F.; Chang, G.-C.; Tsai, Y.-H.; Su, W.-C.; Chen, Y.-M.; Huang, M.-S.; Tsai, F.-Y.; Jiang, S.-S.; Chang, I.-S. et al. Estrogen Receptor Gene Polymorphisms and Lung Adenocarcinoma Risk in Never-Smoking Women. J. Thorac. Oncol.; 2015; 10, pp. 1413-1420. [DOI: https://dx.doi.org/10.1097/JTO.0000000000000646]
233. Kim, W.; Kim, E.; Lee, S.; Kim, D.; Chun, J.; Park, K.H.; Youn, H.; Youn, B. TFAP2C-Mediated Upregulation of TGFBR1 Promotes Lung Tumorigenesis and Epithelial-Mesenchymal Transition. Exp. Mol. Med.; 2016; 48, e273. [DOI: https://dx.doi.org/10.1038/emm.2016.125]
234. Kao, Y.-C.; Jiang, S.-J.; Pan, W.-A.; Wang, K.-C.; Chen, P.-K.; Wei, H.-J.; Chen, W.-S.; Chang, B.-I.; Shi, G.-Y.; Wu, H.-L. The Epidermal Growth Factor-like Domain of CD93 Is a Potent Angiogenic Factor. PLoS ONE; 2012; 7, e51647. [DOI: https://dx.doi.org/10.1371/journal.pone.0051647]
235. Overbeck, T.R.; Arnemann, J.; Waldmann-Beushausen, R.; Trümper, L.; Schöndube, F.A.; Reuter-Jessen, K.; Danner, B.C. ABCA3 Phenotype in Non-Small Cell Lung Cancer Indicates Poor Outcome. Oncology; 2017; 93, pp. 270-278. [DOI: https://dx.doi.org/10.1159/000477619] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28683465]
236. Beers, M.F.; Mulugeta, S. The Biology of the ABCA3 Lipid Transporter in Lung Health and Disease. Cell Tissue Res.; 2017; 367, pp. 481-493. [DOI: https://dx.doi.org/10.1007/s00441-016-2554-z] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28025703]
237. Arnemann, J.; Overbeck, T.; Ort, K.; Emmert, A.; Waldmann-Beushausen, R.; Trümper, L.; Wulf, G.; Schöndube, F.A.; Danner, B. Expression Patterns of ABCA3 and TTF-1 in Non-Small Cell Lung Cancer. Thorac. Cardiovasc. Surg.; 2015; 63, ePP71. [DOI: https://dx.doi.org/10.1055/s-0035-1544567]
238. Zhou, W.; Zhuang, Y.; Sun, J.; Wang, X.; Zhao, Q.; Xu, L.; Wang, Y. Variants of the ABCA3 Gene Might Contribute to Susceptibility to Interstitial Lung Diseases in the Chinese Population. Sci. Rep.; 2017; 7, 4097. [DOI: https://dx.doi.org/10.1038/s41598-017-04486-y]
239. Arkova, O.V.; Drachkova, I.A.; Arshinova, T.V.; Rasskazov, D.A.; Suslov, V.V.; Ponomarenko, P.M.; Ponomarenko, M.P.; Kolchanov, N.A.; Savinkova, L.K. Prediction and Verification of the Influence of the Rs367781716 SNP on the Interaction of the TATA-Binding Protein with the Promoter of the Human АВСА9 Gene. Russ. J. Genet. Appl. Res.; 2016; 6, pp. 785-791. [DOI: https://dx.doi.org/10.1134/S2079059716070029]
240. Piehler, A.; Kaminski, W.E.; Wenzel, J.J.; Langmann, T.; Schmitz, G. Molecular Structure of a Novel Cholesterol-Responsive A Subclass ABC Transporter, ABCA9. Biochem. Biophys. Res. Commun.; 2002; 295, pp. 408-416. [DOI: https://dx.doi.org/10.1016/S0006-291X(02)00659-9]
241. Fang, X.; Yin, Z.; Li, X.; Xia, L.; Quan, X.; Zhao, Y.; Zhou, B. Multiple Functional SNPs in Differentially Expressed Genes Modify Risk and Survival of Non-Small Cell Lung Cancer in Chinese Female Non-Smokers. Oncotarget; 2017; 8, pp. 18924-18934. [DOI: https://dx.doi.org/10.18632/oncotarget.14836]
242. Selamat, S.A.; Chung, B.S.; Girard, L.; Zhang, W.; Zhang, Y.; Campan, M.; Siegmund, K.D.; Koss, M.N.; Hagen, J.A.; Lam, W.L. et al. Genome-Scale Analysis of DNA Methylation in Lung Adenocarcinoma and Integration with MRNA Expression. Genome Res.; 2012; 22, pp. 1197-1211. [DOI: https://dx.doi.org/10.1101/gr.132662.111]
243. Marchitti, S.A.; Orlicky, D.J.; Brocker, C.; Vasiliou, V. Aldehyde Dehydrogenase 3B1 (ALDH3B1): Immunohistochemical Tissue Distribution and Cellular-Specific Localization in Normal and Cancerous Human Tissues. J. Histochem. Cytochem. Off. J. Histochem. Soc.; 2010; 58, pp. 765-783. [DOI: https://dx.doi.org/10.1369/jhc.2010.955773]
244. Deng, T.; Lin, D.; Zhang, M.; Zhao, Q.; Li, W.; Zhong, B.; Deng, Y.; Fu, X. Differential Expression of Bone Morphogenetic Protein 5 in Human Lung Squamous Cell Carcinoma and Adenocarcinoma. Acta Biochim. Biophys. Sin.; 2015; 47, pp. 557-563. [DOI: https://dx.doi.org/10.1093/abbs/gmv037]
245. Tian, X.-P.; Jin, X.-H.; Li, M.; Huang, W.-J.; Xie, D.; Zhang, J.-X. The Depletion of PinX1 Involved in the Tumorigenesis of Non-Small Cell Lung Cancer Promotes Cell Proliferation via P15/Cyclin D1 Pathway. Mol. Cancer; 2017; 16, 74. [DOI: https://dx.doi.org/10.1186/s12943-017-0637-4] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28372542]
246. Al Zeyadi, M.; Dimova, I.; Ranchich, V.; Rukova, B.; Nesheva, D.; Hamude, Z.; Georgiev, S.; Petrov, D.; Toncheva, D. Whole Genome Microarray Analysis in Non-Small Cell Lung Cancer. Biotechnol. Biotechnol. Equip.; 2015; 29, pp. 111-118. [DOI: https://dx.doi.org/10.1080/13102818.2014.989179] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26019623]
247. Jin, X.; Liu, X.; Li, X.; Guan, Y. Integrated Analysis of DNA Methylation and MRNA Expression Profiles Data to Identify Key Genes in Lung Adenocarcinoma. BioMed Res. Int.; 2016; 2016, 4369431. [DOI: https://dx.doi.org/10.1155/2016/4369431] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27610375]
248. Zhang, F.; Chen, X.; Wei, K.; Liu, D.; Xu, X.; Zhang, X.; Shi, H. Identification of Key Transcription Factors Associated with Lung Squamous Cell Carcinoma. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res.; 2017; 23, pp. 172-206. [DOI: https://dx.doi.org/10.12659/MSM.898297]
249. Faner, R.; Cruz, T.; Casserras, T.; López-Giraldo, A.; Noell, G.; Coca, I.; Tal-Singer, R.; Miller, B.; Rodriguez-Roisin, R.; Spira, A. et al. Network Analysis of Lung Transcriptomics Reveals a Distinct B-Cell Signature in Emphysema. Am. J. Respir. Crit. Care Med.; 2016; 193, pp. 1242-1253. [DOI: https://dx.doi.org/10.1164/rccm.201507-1311OC]
250. Hong, S.-Y.; Kao, Y.-R.; Lee, T.-C.; Wu, C.-W. Upregulation of E3 Ubiquitin Ligase CBLC Enhances EGFR Dysregulation and Signaling in Lung Adenocarcinoma. Cancer Res.; 2018; 78, pp. 4984-4996. [DOI: https://dx.doi.org/10.1158/0008-5472.CAN-17-3858]
251. Kim, B.; Lee, H.J.; Choi, H.Y.; Shin, Y.; Nam, S.; Seo, G.; Son, D.-S.; Jo, J.; Kim, J.; Lee, J. et al. Clinical Validity of the Lung Cancer Biomarkers Identified by Bioinformatics Analysis of Public Expression Data. Cancer Res.; 2007; 67, pp. 7431-7438. [DOI: https://dx.doi.org/10.1158/0008-5472.CAN-07-0003]
252. Demidova, A.R.; Aau, M.Y.; Zhuang, L.; Yu, Q. Dual Regulation of Cdc25A by Chk1 and P53-ATF3 in DNA Replication Checkpoint Control *. J. Biol. Chem.; 2009; 284, pp. 4132-4139. [DOI: https://dx.doi.org/10.1074/jbc.M808118200]
253. Chiba, I.; Takahashi, T.; Nau, M.M.; D’Amico, D.; Curiel, D.T.; Mitsudomi, T.; Buchhagen, D.L.; Carbone, D.; Piantadosi, S.; Koga, H. Mutations in the P53 Gene Are Frequent in Primary, Resected Non-Small Cell Lung Cancer. Lung Cancer Study Group. Oncogene; 1990; 5, pp. 1603-1610. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/1979160]
254. He, N.; Li, C.; Zhang, X.; Sheng, T.; Chi, S.; Chen, K.; Wang, Q.; Vertrees, R.; Logrono, R.; Xie, J. Regulation of Lung Cancer Cell Growth and Invasiveness by Beta-TRCP. Mol. Carcinog.; 2005; 42, pp. 18-28. [DOI: https://dx.doi.org/10.1002/mc.20063]
255. Wu, W.; Fan, Y.H.; Kemp, B.L.; Walsh, G.; Mao, L. Overexpression of Cdc25A and Cdc25B Is Frequent in Primary Non-Small Cell Lung Cancer but Is Not Associated with Overexpression of c-Myc. Cancer Res.; 1998; 58, pp. 4082-4085. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9751615]
256. Younis, R.H.; Cao, W.; Lin, R.; Xia, R.; Liu, Z.; Edelman, M.J.; Mei, Y.; Mao, L.; Ren, H. CDC25AQ110del: A Novel Cell Division Cycle 25A Isoform Aberrantly Expressed in Non-Small Cell Lung Cancer. PLoS ONE; 2012; 7, e46464. [DOI: https://dx.doi.org/10.1371/journal.pone.0046464]
257. Cai, W.; Chen, C.; Li, X.; Shi, J.; Sun, Q.; Liu, D.; Sun, Y.; Hou, L.; Zhao, X.; Gu, S. et al. Association of CDC25 Phosphatase Family Polymorphisms with the Efficacy/Toxicity of Platinum-Based Chemotherapy in Chinese Advanced NSCLC Patients. Future Oncol. Lond. Engl.; 2014; 10, pp. 1175-1185. [DOI: https://dx.doi.org/10.2217/fon.14.25] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24947259]
258. Nguyen, M.-H.; Koinuma, J.; Ueda, K.; Ito, T.; Tsuchiya, E.; Nakamura, Y.; Daigo, Y. Phosphorylation and Activation of Cell Division Cycle Associated 5 by Mitogen-Activated Protein Kinase Play a Crucial Role in Human Lung Carcinogenesis. Cancer Res.; 2010; 70, pp. 5337-5347. [DOI: https://dx.doi.org/10.1158/0008-5472.CAN-09-4372] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20551060]
259. Osthus, R.C.; Karim, B.; Prescott, J.E.; Smith, B.D.; McDevitt, M.; Huso, D.L.; Dang, C.V. The Myc Target Gene JPO1/CDCA7 Is Frequently Over-Expressed in Human Tumors and Has Limited Transforming Activity In Vivo. Cancer Res.; 2005; 65, pp. 5620-5627. [DOI: https://dx.doi.org/10.1158/0008-5472.CAN-05-0536]
260. Wang, H.; Ye, L.; Xing, Z.; Li, H.; Lv, T.; Liu, H.; Zhang, F.; Song, Y. CDCA7 Promotes Lung Adenocarcinoma Proliferation via Regulating the Cell Cycle. Pathol. Res. Pract.; 2019; 215, 152559. [DOI: https://dx.doi.org/10.1016/j.prp.2019.152559] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31570276]
261. Cybulski, C.; Masojc, B.; Oszutowska, D.; Jaworowska, E.; Grodzki, T.; Waloszczyk, P.; Serwatowski, P.; Pankowski, J.; Huzarski, T.; Byrski, T. et al. Constitutional CHEK2 Mutations Are Associated with a Decreased Risk of Lung and Laryngeal Cancers. Carcinogenesis; 2008; 29, pp. 762-765. [DOI: https://dx.doi.org/10.1093/carcin/bgn044] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18281249]
262. Kukita, Y.; Okami, J.; Yoneda-Kato, N.; Nakamae, I.; Kawabata, T.; Higashiyama, M.; Kato, J.; Kodama, K.; Kato, K. Homozygous Inactivation of CHEK2 Is Linked to a Familial Case of Multiple Primary Lung Cancer with Accompanying Cancers in Other Organs. Cold Spring Harb. Mol. Case Stud.; 2016; 2, a001032. [DOI: https://dx.doi.org/10.1101/mcs.a001032]
263. Wang, Y.; McKay, J.D.; Rafnar, T.; Wang, Z.; Timofeeva, M.; Broderick, P.; Zong, X.; Laplana, M.; Wei, Y.; Han, Y. et al. Rare Variants of Large Effect in BRCA2 and CHEK2 Affect Risk of Lung Cancer. Nat. Genet.; 2014; 46, pp. 736-741. [DOI: https://dx.doi.org/10.1038/ng.3002]
264. Cybulski, C.; Górski, B.; Huzarski, T.; Masojć, B.; Mierzejewski, M.; Dębniak, T.; Teodorczyk, U.; Byrski, T.; Gronwald, J.; Matyjasik, J. et al. CHEK2 Is a Multiorgan Cancer Susceptibility Gene. Am. J. Hum. Genet.; 2004; 75, pp. 1131-1135. [DOI: https://dx.doi.org/10.1086/426403]
265. Xu, W.; Liu, D.; Yang, Y.; Ding, X.; Sun, Y.; Zhang, B.; Xu, J.; Su, B. Association of CHEK2 Polymorphisms with the Efficacy of Platinum-Based Chemotherapy for Advanced Non-Small-Cell Lung Cancer in Chinese Never-Smoking Women. J. Thorac. Dis.; 2016; 8, pp. 2519-2529. [DOI: https://dx.doi.org/10.21037/jtd.2016.08.70] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27747004]
266. Okamoto, T.; Kohno, M.; Ito, K.; Takada, K.; Katsura, M.; Morodomi, Y.; Toyokawa, G.; Shoji, F.; Maehara, Y. Clinical Significance of DNA Damage Response Factors and Chromosomal Instability in Primary Lung Adenocarcinoma. Anticancer Res.; 2017; 37, pp. 1729-1735. [DOI: https://dx.doi.org/10.21873/anticanres.11505] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28373435]
267. Liu, W.; Wei, H.; Gao, Z.; Chen, G.; Liu, Y.; Gao, X.; Bai, G.; He, S.; Liu, T.; Xu, W. et al. COL5A1 May Contribute the Metastasis of Lung Adenocarcinoma. Gene; 2018; 665, pp. 57-66. [DOI: https://dx.doi.org/10.1016/j.gene.2018.04.066] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29702185]
268. Li, H.; Wu, H.; Zhang, H.; Li, Y.; Li, S.; Hou, Q.; Wu, S.; Yang, S.-Y. Identification of Curcumin-Inhibited Extracellular Matrix Receptors in Non–Small Cell Lung Cancer A549 Cells by RNA Sequencing. Tumor Biol.; 2017; 39, 1010428317705334. [DOI: https://dx.doi.org/10.1177/1010428317705334] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28618934]
269. He, W.; Zhang, H.; Wang, Y.; Zhou, Y.; Luo, Y.; Cui, Y.; Jiang, N.; Jiang, W.; Wang, H.; Xu, D. et al. CTHRC1 Induces Non-Small Cell Lung Cancer (NSCLC) Invasion through Upregulating MMP-7/MMP-9. BMC Cancer; 2018; 18, 400. [DOI: https://dx.doi.org/10.1186/s12885-018-4317-6] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29631554]
270. Liu, X.; Liu, B.; Cui, Y.; Wang, F.; Sun, H.; Lv, F. Collagen Triple Helix Repeat Containing 1 (Cthrc1) Is an Independently Prognostic Biomarker of Non-Small Cell Lung Cancers with Cigarette Smoke. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med.; 2014; 35, pp. 11677-11683. [DOI: https://dx.doi.org/10.1007/s13277-014-2449-0]
271. Ke, Z.; He, W.; Lai, Y.; Guo, X.; Chen, S.; Li, S.; Wang, Y.; Wang, L. Overexpression of Collagen Triple Helix Repeat Containing 1 (CTHRC1) Is Associated with Tumour Aggressiveness and Poor Prognosis in Human Non-Small Cell Lung Cancer. Oncotarget; 2014; 5, pp. 9410-9424. [DOI: https://dx.doi.org/10.18632/oncotarget.2421]
272. Chen, S.; Li, P.; Yang, R.; Cheng, R.; Zhang, F.; Wang, Y.; Chen, X.; Sun, Q.; Zang, W.; Du, Y. et al. MicroRNA-30b Inhibits Cell Invasion and Migration through Targeting Collagen Triple Helix Repeat Containing 1 in Non-Small Cell Lung Cancer. Cancer Cell Int.; 2015; 15, 85. [DOI: https://dx.doi.org/10.1186/s12935-015-0236-7]
273. Ge, N.; Chu, X.-M.; Xuan, Y.-P.; Ren, D.-Q.; Wang, Y.; Ma, K.; Gao, H.-J.; Jiao, W.-J. Associations between Abnormal Vitamin D Metabolism Pathway Function and Non-Small Cell Lung Cancer. Oncol. Lett.; 2017; 14, pp. 7538-7544. [DOI: https://dx.doi.org/10.3892/ol.2017.7162]
274. Kim, S.A.; Miettinen, M. 35 Aberrant Expression of Desmin in Primary Lung Cancer Is Observed Exclusively in Carcinomas With Neuroendocrine Differentiation. Am. J. Clin. Pathol.; 2018; 149, pp. S15-S16. [DOI: https://dx.doi.org/10.1093/ajcp/aqx116.034]
275. Terada, T. Pleomorphic Carcinoma of the Lung: A Case Report with Immunohistochemical Studies. Respir. Med. CME; 2010; 3, pp. 252-256. [DOI: https://dx.doi.org/10.1016/j.rmedc.2009.10.001]
276. Bahadur, S.; Pujani, M.; Jetley, S.; Khetrapal, S.; Raina, P.K. Large Cell Lung Carcinoma with Rhabdoid Phenotype: Report of a Rare Entity Presenting with Chest Wall Involvement. J. Cancer Res. Ther.; 2015; 11, 657. [DOI: https://dx.doi.org/10.4103/0973-1482.138039] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26458655]
277. Yu, J.-R.; Tai, Y.; Jin, Y.; Hammell, M.C.; Wilkinson, J.E.; Roe, J.-S.; Vakoc, C.R.; Van Aelst, L. TGF-β/Smad Signaling through DOCK4 Facilitates Lung Adenocarcinoma Metastasis. Genes Dev.; 2015; 29, pp. 250-261. [DOI: https://dx.doi.org/10.1101/gad.248963.114] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25644601]
278. Little, A.C.; Sham, D.; Hristova, M.; Danyal, K.; Heppner, D.E.; Bauer, R.A.; Sipsey, L.M.; Habibovic, A.; van der Vliet, A. DUOX1 Silencing in Lung Cancer Promotes EMT, Cancer Stem Cell Characteristics and Invasive Properties. Oncogenesis; 2016; 5, e261. [DOI: https://dx.doi.org/10.1038/oncsis.2016.61]
279. Little, A.C.; Hristova, M.; van Lith, L.; Schiffers, C.; Dustin, C.M.; Habibovic, A.; Danyal, K.; Heppner, D.E.; Lin, M.-C.J.; van der Velden, J. et al. Dysregulated Redox Regulation Contributes to Nuclear EGFR Localization and Pathogenicity in Lung Cancer. Sci. Rep.; 2019; 9, 4844. [DOI: https://dx.doi.org/10.1038/s41598-019-41395-8]
280. Rigutto, S.; Hoste, C.; Grasberger, H.; Milenkovic, M.; Communi, D.; Dumont, J.E.; Corvilain, B.; Miot, F.; De Deken, X. Activation of Dual Oxidases Duox1 and Duox2: Differential Regulation Mediated by Camp-Dependent Protein Kinase and Protein Kinase C-Dependent Phosphorylation. J. Biol. Chem.; 2009; 284, pp. 6725-6734. [DOI: https://dx.doi.org/10.1074/jbc.M806893200]
281. Luxen, S.; Belinsky, S.A.; Knaus, U.G. Silencing of DUOX NADPH Oxidases by Promoter Hypermethylation in Lung Cancer. Cancer Res.; 2008; 68, pp. 1037-1045. [DOI: https://dx.doi.org/10.1158/0008-5472.CAN-07-5782]
282. Sun, C.-C.; Zhou, Q.; Hu, W.; Li, S.-J.; Zhang, F.; Chen, Z.-L.; Li, G.; Bi, Z.-Y.; Bi, Y.-Y.; Gong, F.-Y. et al. Transcriptional E2F1/2/5/8 as Potential Targets and Transcriptional E2F3/6/7 as New Biomarkers for the Prognosis of Human Lung Carcinoma. Aging; 2018; 10, pp. 973-987. [DOI: https://dx.doi.org/10.18632/aging.101441]
283. Yu, L.; Fang, F.; Lu, S.; Li, X.; Yang, Y.; Wang, Z. LncRNA-HIT Promotes Cell Proliferation of Non-Small Cell Lung Cancer by Association with E2F1. Cancer Gene Ther.; 2017; 24, pp. 221-226. [DOI: https://dx.doi.org/10.1038/cgt.2017.10]
284. Eymin, B.; Gazzeri, S.; Brambilla, C.; Brambilla, E. Distinct Pattern of E2F1 Expression in Human Lung Tumours: E2F1 Is Upregulated in Small Cell Lung Carcinoma. Oncogene; 2001; 20, pp. 1678-1687. [DOI: https://dx.doi.org/10.1038/sj.onc.1204242]
285. Yin, J.; Fu, W.; Dai, L.; Jiang, Z.; Liao, H.; Chen, W.; Pan, L.; Zhao, J. ANKRD22 Promotes Progression of Non-Small Cell Lung Cancer through Transcriptional up-Regulation of E2F1. Sci. Rep.; 2017; 7, 4430. [DOI: https://dx.doi.org/10.1038/s41598-017-04818-y] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28667340]
286. Busslinger, M. Transcriptional Control of Early B Cell Development. Annu. Rev. Immunol.; 2004; 22, pp. 55-79. [DOI: https://dx.doi.org/10.1146/annurev.immunol.22.012703.104807] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15032574]
287. Liao, D. Emerging Roles of the EBF Family of Transcription Factors in Tumor Suppression. Mol. Cancer Res. MCR; 2009; 7, pp. 1893-1901. [DOI: https://dx.doi.org/10.1158/1541-7786.MCR-09-0229] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19996307]
288. Gao, H.; Lukin, K.; Ramírez, J.; Fields, S.; Lopez, D.; Hagman, J. Opposing Effects of SWI/SNF and Mi-2/NuRD Chromatin Remodeling Complexes on Epigenetic Reprogramming by EBF and Pax5. Proc. Natl. Acad. Sci. USA; 2009; 106, pp. 11258-11263. [DOI: https://dx.doi.org/10.1073/pnas.0809485106]
289. Decker, T.; Pasca di Magliano, M.; McManus, S.; Sun, Q.; Bonifer, C.; Tagoh, H.; Busslinger, M. Stepwise Activation of Enhancer and Promoter Regions of the B Cell Commitment Gene Pax5 in Early Lymphopoiesis. Immunity; 2009; 30, pp. 508-520. [DOI: https://dx.doi.org/10.1016/j.immuni.2009.01.012]
290. Shen, A.; Chen, Y.; Liu, L.; Huang, Y.; Chen, H.; Qi, F.; Lin, J.; Shen, Z.; Wu, X.; Wu, M. et al. EBF1-Mediated Upregulation of Ribosome Assembly Factor PNO1 Contributes to Cancer Progression by Negatively Regulating the P53 Signaling Pathway. Cancer Res.; 2019; 79, pp. 2257-2270. [DOI: https://dx.doi.org/10.1158/0008-5472.CAN-18-3238]
291. Welsh, S.J.; Churchman, M.L.; Togni, M.; Mullighan, C.G.; Hagman, J. Deregulation of Kinase Signaling and Lymphoid Development in EBF1-PDGFRB ALL Leukemogenesis. Leukemia; 2018; 32, pp. 38-48. [DOI: https://dx.doi.org/10.1038/leu.2017.166]
292. Richtmann, S.; Wilkens, D.; Warth, A.; Lasitschka, F.; Winter, H.; Christopoulos, P.; Herth, F.J.F.; Muley, T.; Meister, M.; Schneider, M.A. FAM83A and FAM83B as Prognostic Biomarkers and Potential New Therapeutic Targets in NSCLC. Cancers; 2019; 11, 652. [DOI: https://dx.doi.org/10.3390/cancers11050652]
293. Shi, R.; Jiao, Z.; Yu, A.; Wang, T. Long Noncoding Antisense RNA FAM83A-AS1 Promotes Lung Cancer Cell Progression by Increasing FAM83A. J. Cell. Biochem.; 2019; 120, pp. 10505-10512. [DOI: https://dx.doi.org/10.1002/jcb.28336]
294. Zhang, J.-T.; Lin, Y.-C.; Xiao, B.-F.; Yu, B.-T. Overexpression of Family with Sequence Similarity 83, Member A (FAM83A) Predicts Poor Clinical Outcomes in Lung Adenocarcinoma. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res.; 2019; 25, pp. 4264-4272. [DOI: https://dx.doi.org/10.12659/MSM.910804]
295. Wang, Y.; Lu, T.; Wo, Y.; Sun, X.; Li, S.; Miao, S.; Dong, Y.; Leng, X.; Jiao, W. Identification of a Putative Competitive Endogenous RNA Network for Lung Adenocarcinoma Using TCGA Datasets. PeerJ; 2019; 7, e6809. [DOI: https://dx.doi.org/10.7717/peerj.6809] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31065463]
296. Zhang, W.; Shen, Y.; Feng, G. Predicting the Survival of Patients with Lung Adenocarcinoma Using a Four-Gene Prognosis Risk Model. Oncol. Lett.; 2019; 18, pp. 535-544. [DOI: https://dx.doi.org/10.3892/ol.2019.10366]
297. Marsit, C.J.; Liu, M.; Nelson, H.H.; Posner, M.; Suzuki, M.; Kelsey, K.T. Inactivation of the Fanconi Anemia/BRCA Pathway in Lung and Oral Cancers: Implications for Treatment and Survival. Oncogene; 2004; 23, pp. 1000-1004. [DOI: https://dx.doi.org/10.1038/sj.onc.1207256] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14647419]
298. Zhang, W.; Fan, J.; Chen, Q.; Lei, C.; Qiao, B.; Liu, Q. SPP1 and AGER as Potential Prognostic Biomarkers for Lung Adenocarcinoma. Oncol. Lett.; 2018; 15, pp. 7028-7036. [DOI: https://dx.doi.org/10.3892/ol.2018.8235] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29849788]
299. Lim, S.B.; Tan, S.J.; Lim, W.-T.; Lim, C.T. An Extracellular Matrix-Related Prognostic and Predictive Indicator for Early-Stage Non-Small Cell Lung Cancer. Nat. Commun.; 2017; 8, 1734. [DOI: https://dx.doi.org/10.1038/s41467-017-01430-6] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29170406]
300. Jang, H.; Jun, Y.; Kim, S.; Kim, E.; Jung, Y.; Park, B.J.; Lee, J.; Kim, J.; Lee, S.; Kim, J. FCN3 Functions as a Tumor Suppressor of Lung Adenocarcinoma through Induction of Endoplasmic Reticulum Stress. Cell Death Dis.; 2021; 12, 407. [DOI: https://dx.doi.org/10.1038/s41419-021-03675-y]
301. Sin, S.; Bonin, F.; Petit, V.; Meseure, D.; Lallemand, F.; Bièche, I.; Bellahcène, A.; Castronovo, V.; de Wever, O.; Gespach, C. et al. Role of the Focal Adhesion Protein Kindlin-1 in Breast Cancer Growth and Lung Metastasis. J. Natl. Cancer Inst.; 2011; 103, pp. 1323-1337. [DOI: https://dx.doi.org/10.1093/jnci/djr290]
302. Zhan, J.; Zhu, X.; Guo, Y.; Wang, Y.; Wang, Y.; Qiang, G.; Niu, M.; Hu, J.; Du, J.; Li, Z. et al. Opposite Role of Kindlin-1 and Kindlin-2 in Lung Cancers. PLoS ONE; 2012; 7, e50313. [DOI: https://dx.doi.org/10.1371/journal.pone.0050313]
303. Gu, Z.; Gao, S.; Zhang, F.; Wang, Z.; Ma, W.; Davis, R.E.; Wang, Z. Protein Arginine Methyltransferase 5 Is Essential for Growth of Lung Cancer Cells. Biochem. J.; 2012; 446, pp. 235-241. [DOI: https://dx.doi.org/10.1042/BJ20120768]
304. Woenckhaus, M.; Klein-Hitpass, L.; Grepmeier, U.; Merk, J.; Pfeifer, M.; Wild, P.; Bettstetter, M.; Wuensch, P.; Blaszyk, H.; Hartmann, A. et al. Smoking and Cancer-Related Gene Expression in Bronchial Epithelium and Non-Small-Cell Lung Cancers. J. Pathol.; 2006; 210, pp. 192-204. [DOI: https://dx.doi.org/10.1002/path.2039]
305. Sen, P.; Dharmadhikari, A.V.; Majewski, T.; Mohammad, M.A.; Kalin, T.V.; Zabielska, J.; Ren, X.; Bray, M.; Brown, H.M.; Welty, S. et al. Comparative Analyses of Lung Transcriptomes in Patients with Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins and in Foxf1 Heterozygous Knockout Mice. PLoS ONE; 2014; 9, e94390. [DOI: https://dx.doi.org/10.1371/journal.pone.0094390] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24722050]
306. Kong, P.-Z.; Li, G.-M.; Tian, Y.; Song, B.; Shi, R. Decreased Expression of FOXF2 as New Predictor of Poor Prognosis in Stage I Non-Small Cell Lung Cancer. Oncotarget; 2016; 7, pp. 55601-55610. [DOI: https://dx.doi.org/10.18632/oncotarget.10876] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27487137]
307. Kundu, S.T.; Byers, L.A.; Peng, D.H.; Roybal, J.D.; Diao, L.; Wang, J.; Tong, P.; Creighton, C.J.; Gibbons, D.L. The MiR-200 Family and the MiR-183~96~182 Cluster Target Foxf2 to Inhibit Invasion and Metastasis in Lung Cancers. Oncogene; 2016; 35, pp. 173-186. [DOI: https://dx.doi.org/10.1038/onc.2015.71] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25798833]
308. Goldie, S.J.; Mulder, K.W.; Tan, D.W.-M.; Lyons, S.K.; Sims, A.H.; Watt, F.M. FRMD4A Upregulation in Human Squamous Cell Carcinoma Promotes Tumor Growth and Metastasis and Is Associated with Poor Prognosis. Cancer Res.; 2012; 72, pp. 3424-3436. [DOI: https://dx.doi.org/10.1158/0008-5472.CAN-12-0423]
309. Velcheti, V.; Thawani, R.; Khunger, M.; Mukhopadhyay, S.; Chute, D.J.; Schrock, A.B.; Ali, S.M. FRMD4A/RET: A Novel RET Oncogenic Fusion Variant in Non–Small Cell Lung Carcinoma. J. Thorac. Oncol.; 2017; 12, pp. e15-e16. [DOI: https://dx.doi.org/10.1016/j.jtho.2016.11.274]
310. Liao, C.-M.; Mukherjee, S.; Tiyaboonchai, A.; Maguire, J.A.; Cardenas-Diaz, F.L.; French, D.L.; Gadue, P. GATA6 Suppression Enhances Lung Specification from Human Pluripotent Stem Cells. J. Clin. Investig.; 2018; 128, pp. 2944-2950. [DOI: https://dx.doi.org/10.1172/JCI96539]
311. Mehta, A.; Cordero, J.; Dobersch, S.; Romero-Olmedo, A.J.; Savai, R.; Bodner, J.; Chao, C.; Fink, L.; Guzmán-Díaz, E.; Singh, I. et al. Non-invasive Lung Cancer Diagnosis by Detection of GATA6 and NKX2-1 Isoforms in Exhaled Breath Condensate. EMBO Mol. Med.; 2016; 8, pp. 1380-1389. [DOI: https://dx.doi.org/10.15252/emmm.201606382]
312. Li, H.; Feng, C.; Shi, S. MiR-196b Promotes Lung Cancer Cell Migration and Invasion through the Targeting of GATA6. Oncol. Lett.; 2018; 16, pp. 247-252. [DOI: https://dx.doi.org/10.3892/ol.2018.8671]
313. Ma, R.; Li, X.; Liu, H.; Jiang, R.; Yang, M.; Zhang, M.; Wang, Y.; Zhao, Y.; Li, H. GATA6-Upregulating Autophagy Promotes TKI Resistance in Nonsmall Cell Lung Cancer. Cancer Biol. Ther.; 2019; 20, pp. 1206-1212. [DOI: https://dx.doi.org/10.1080/15384047.2019.1599665]
314. Mulvihill, M.S.; Kwon, Y.-W.; Lee, S.; Fang, L.T.; Choi, H.; Ray, R.; Kang, H.C.; Mao, J.-H.; Jablons, D.; Kim, I.-J. Gremlin Is Overexpressed in Lung Adenocarcinoma and Increases Cell Growth and Proliferation in Normal Lung Cells. PLoS ONE; 2012; 7, e42264. [DOI: https://dx.doi.org/10.1371/journal.pone.0042264]
315. Cahill, E.; Costello, C.M.; Rowan, S.C.; Harkin, S.; Howell, K.; Leonard, M.O.; Southwood, M.; Cummins, E.P.; Fitzpatrick, S.F.; Taylor, C.T. et al. Gremlin Plays a Key Role in the Pathogenesis of Pulmonary Hypertension. Circulation; 2012; 125, pp. 920-930. [DOI: https://dx.doi.org/10.1161/CIRCULATIONAHA.111.038125] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22247494]
316. Gentles, A.J.; Hui, A.B.-Y.; Feng, W.; Azizi, A.; Nair, R.V.; Knowles, D.A.; Yu, A.; Jeong, Y.; Bejnood, A.; Forgó, E. et al. Clinically-Relevant Cell Type Cross-Talk Identified from a Human Lung Tumor Microenvironment Interactome. bioRxiv; 2019; 637306. [DOI: https://dx.doi.org/10.1101/637306]
317. Landry-Truchon, K.; Houde, N.; Boucherat, O.; Joncas, F.-H.; Dasen, J.S.; Philippidou, P.; Mansfield, J.H.; Jeannotte, L. HOXA5 Plays Tissue-Specific Roles in the Developing Respiratory System. Dev. Camb. Engl.; 2017; 144, pp. 3547-3561. [DOI: https://dx.doi.org/10.1242/dev.152686]
318. Zhang, M.; Nie, F.; Sun, M.; Xia, R.; Xie, M.; Lu, K.; Li, W. HOXA5 Indicates Poor Prognosis and Suppresses Cell Proliferation by Regulating P21 Expression in Non Small Cell Lung Cancer. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med.; 2015; 36, pp. 3521-3531. [DOI: https://dx.doi.org/10.1007/s13277-014-2988-4] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25549794]
319. Chang, C.-J.; Chen, Y.-L.; Hsieh, C.-H.; Liu, Y.-J.; Yu, S.-L.; Chen, J.J.W.; Wang, C.-C. HOXA5 and P53 Cooperate to Suppress Lung Cancer Cell Invasion and Serve as Good Prognostic Factors in Non-Small Cell Lung Cancer. J. Cancer; 2017; 8, pp. 1071-1081. [DOI: https://dx.doi.org/10.7150/jca.17295] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28529621]
320. Wang, C.-C.; Su, K.-Y.; Chen, H.-Y.; Chang, S.-Y.; Shen, C.-F.; Hsieh, C.-H.; Hong, Q.-S.; Chiang, C.-C.; Chang, G.-C.; Yu, S.-L. et al. HOXA5 Inhibits Metastasis via Regulating Cytoskeletal Remodelling and Associates with Prolonged Survival in Non-Small-Cell Lung Carcinoma. PLoS ONE; 2015; 10, e0124191. [DOI: https://dx.doi.org/10.1371/journal.pone.0124191]
321. Zhu, Q.; Lv, T.; Wu, Y.; Shi, X.; Liu, H.; Song, Y. Long Non-coding RNA 00312 Regulated by HOXA5 Inhibits Tumour Proliferation and Promotes Apoptosis in Non-small Cell Lung Cancer. J. Cell. Mol. Med.; 2017; 21, pp. 2184-2198. [DOI: https://dx.doi.org/10.1111/jcmm.13142] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28338293]
322. Dong, Y.; Zhang, D.; Cai, M.; Luo, Z.; Zhu, Y.; Gong, L.; Lei, Y.; Tan, X.; Zhu, Q.; Han, S. SPOP Regulates the DNA Damage Response and Lung Adenocarcinoma Cell Response to Radiation. Am. J. Cancer Res.; 2019; 9, pp. 1469-1483.
323. Leithner, K.; Hirschmugl, B.; Li, Y.; Tang, B.; Papp, R.; Nagaraj, C.; Stacher, E.; Stiegler, P.; Lindenmann, J.; Olschewski, A. et al. TASK-1 Regulates Apoptosis and Proliferation in a Subset of Non-Small Cell Lung Cancers. PLoS ONE; 2016; 11, e0157453. [DOI: https://dx.doi.org/10.1371/journal.pone.0157453]
324. van der Wekken, A.J.; Kuiper, J.L.; Saber, A.; Terpstra, M.M.; Wei, J.; Hiltermann, T.J.N.; Thunnissen, E.; Heideman, D.a.M.; Timens, W.; Schuuring, E. et al. Overall Survival in EGFR Mutated Non-Small-Cell Lung Cancer Patients Treated with Afatinib after EGFR TKI and Resistant Mechanisms upon Disease Progression. PLoS ONE; 2017; 12, e0182885. [DOI: https://dx.doi.org/10.1371/journal.pone.0182885]
325. Salvador, F.; Martin, A.; López-Menéndez, C.; Moreno-Bueno, G.; Santos, V.; Vázquez-Naharro, A.; Santamaria, P.G.; Morales, S.; Dubus, P.R.; Muinelo-Romay, L. et al. Lysyl Oxidase-like Protein LOXL2 Promotes Lung Metastasis of Breast Cancer. Cancer Res.; 2017; 77, pp. 5846-5859. [DOI: https://dx.doi.org/10.1158/0008-5472.CAN-16-3152]
326. Kamikawaji, K.; Seki, N.; Watanabe, M.; Mataki, H.; Kumamoto, T.; Takagi, K.; Mizuno, K.; Inoue, H. Regulation of LOXL2 and SERPINH1 by Antitumor MicroRNA-29a in Lung Cancer with Idiopathic Pulmonary Fibrosis. J. Hum. Genet.; 2016; 61, pp. 985-993. [DOI: https://dx.doi.org/10.1038/jhg.2016.99] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27488440]
327. Leeming, D.J.; Willumsen, N.; Sand, J.M.B.; Holm Nielsen, S.; Dasgupta, B.; Brodmerkel, C.; Curran, M.; Bager, C.L.; Karsdal, M.A. A Serological Marker of the N-Terminal Neoepitope Generated during LOXL2 Maturation Is Elevated in Patients with Cancer or Idiopathic Pulmonary Fibrosis. Biochem. Biophys. Rep.; 2018; 17, pp. 38-43. [DOI: https://dx.doi.org/10.1016/j.bbrep.2018.11.002] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30555938]
328. Canesin, G.; Cuevas, E.P.; Santos, V.; López-Menéndez, C.; Moreno-Bueno, G.; Huang, Y.; Csiszar, K.; Portillo, F.; Peinado, H.; Lyden, D. et al. Lysyl Oxidase-like 2 (LOXL2) and E47 EMT Factor: Novel Partners in E-Cadherin Repression and Early Metastasis Colonization. Oncogene; 2015; 34, pp. 951-964. [DOI: https://dx.doi.org/10.1038/onc.2014.23]
329. Jin, H.; Sun, L.; Tang, L.; Yu, W.; Li, H. Expression of GARP Is Increased in Tumor-Infiltrating Regulatory T Cells and Is Correlated to Clinicopathology of Lung Cancer Patients. Front. Immunol.; 2017; 8, 138. [DOI: https://dx.doi.org/10.3389/fimmu.2017.00138]
330. Zhu, H.; Shi, L.; Zhang, Y.; Zhu, Y.; Bai, C.; Wang, X.; Zhou, J. Myocyte Enhancer Factor 2D Provides a Cross-Talk between Chronic Inflammation and Lung Cancer. J. Transl. Med.; 2017; 15, 65. [DOI: https://dx.doi.org/10.1186/s12967-017-1168-x]
331. Zhao, X.; Liu, M.; Li, D. Oleanolic Acid Suppresses the Proliferation of Lung Carcinoma Cells by MiR-122/Cyclin G1/MEF2D Axis. Mol. Cell. Biochem.; 2015; 400, pp. 1-7. [DOI: https://dx.doi.org/10.1007/s11010-014-2228-7] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25472877]
332. Song, L.; Li, D.; Zhao, Y.; Gu, Y.; Zhao, D.; Li, X.; Bai, X.; Sun, Y.; Zhang, X.; Sun, H. et al. MiR-218 Suppressed the Growth of Lung Carcinoma by Reducing MEF2D Expression. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med.; 2016; 37, pp. 2891-2900. [DOI: https://dx.doi.org/10.1007/s13277-015-4038-2] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26409449]
333. Tsubouchi, H.; Roeder, G.S. The Mnd1 Protein Forms a Complex with Hop2 to Promote Homologous Chromosome Pairing and Meiotic Double-Strand Break Repair. Mol. Cell. Biol.; 2002; 22, pp. 3078-3088. [DOI: https://dx.doi.org/10.1128/MCB.22.9.3078-3088.2002]
334. Sparaneo, A.; Fabrizio, F.P.; la Torre, A.; Graziano, P.; Di Maio, M.; Fontana, A.; Bisceglia, M.; Rossi, A.; Pizzolitto, S.; De Maglio, G. et al. Effects of KEAP1 Silencing on the Regulation of NRF2 Activity in Neuroendocrine Lung Tumors. Int. J. Mol. Sci.; 2019; 20, 2531. [DOI: https://dx.doi.org/10.3390/ijms20102531]
335. Frank, R.; Scheffler, M.; Merkelbach-Bruse, S.; Ihle, M.A.; Kron, A.; Rauer, M.; Ueckeroth, F.; König, K.; Michels, S.; Fischer, R. et al. Clinical and Pathological Characteristics of KEAP1- and NFE2L2-Mutated Non-Small Cell Lung Carcinoma (NSCLC). Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res.; 2018; 24, pp. 3087-3096. [DOI: https://dx.doi.org/10.1158/1078-0432.CCR-17-3416]
336. Paik, P.K.; Qeriqi, B.; Ahn, L.S.H.; Ginsberg, M.S.; Tandon, N.; McFarland, D.; Doyle, L.A.; de Stanchina, E.; Rudin, C.M. Targeting NFE2L2 Mutations in Advanced Squamous Cell Lung Cancers with the TORC1/2 Inhibitor TAK228. J. Clin. Oncol.; 2018; 36, 9098. [DOI: https://dx.doi.org/10.1200/JCO.2018.36.15_suppl.9098]
337. Qian, Z.; Zhou, T.; Gurguis, C.I.; Xu, X.; Wen, Q.; Lv, J.; Fang, F.; Hecker, L.; Cress, A.E.; Natarajan, V. et al. Nuclear Factor, Erythroid 2-like 2-Associated Molecular Signature Predicts Lung Cancer Survival. Sci. Rep.; 2015; 5, 16889. [DOI: https://dx.doi.org/10.1038/srep16889] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26596768]
338. Tong, Y.-H.; Zhang, B.; Fan, Y.; Lin, N.-M. Keap1–Nrf2 Pathway: A Promising Target towards Lung Cancer Prevention and Therapeutics. Chronic Dis. Transl. Med.; 2015; 1, pp. 175-186. [DOI: https://dx.doi.org/10.1016/j.cdtm.2015.09.002] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29063005]
339. Zhang, D.; Rennhack, J.; Andrechek, E.R.; Rockwell, C.E.; Liby, K.T. Identification of an Unfavorable Immune Signature in Advanced Lung Tumors from Nrf2-Deficient Mice. Antioxid. Redox Signal.; 2018; 29, pp. 1535-1552. [DOI: https://dx.doi.org/10.1089/ars.2017.7201] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29634345]
340. Hellyer, J.A.; Stehr, H.; Das, M.; Padda, S.K.; Ramchandran, K.; Neal, J.W.; Diehn, M.; Wakelee, H.A. Impact of KEAP1/NFE2L2/CUL3 Mutations on Duration of Response to EGFR Tyrosine Kinase Inhibitors in EGFR Mutated Non-Small Cell Lung Cancer. Lung Cancer Amst. Neth.; 2019; 134, pp. 42-45. [DOI: https://dx.doi.org/10.1016/j.lungcan.2019.05.002]
341. Kamizono, S.; Duncan, G.S.; Seidel, M.G.; Morimoto, A.; Hamada, K.; Grosveld, G.; Akashi, K.; Lind, E.F.; Haight, J.P.; Ohashi, P.S. et al. Nfil3/E4bp4 Is Required for the Development and Maturation of NK Cells in Vivo. J. Exp. Med.; 2009; 206, pp. 2977-2986. [DOI: https://dx.doi.org/10.1084/jem.20092176]
342. Zimmermann, K.; Opitz, N.; Dedio, J.; Renne, C.; Muller-Esterl, W.; Oess, S. NOSTRIN: A Protein Modulating Nitric Oxide Release and Subcellular Distribution of Endothelial Nitric Oxide Synthase. Proc. Natl. Acad. Sci. USA; 2002; 99, pp. 17167-17172. [DOI: https://dx.doi.org/10.1073/pnas.252345399] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12446846]
343. Chakraborty, S.; Ain, R. Nitric-Oxide Synthase Trafficking Inducer Is a Pleiotropic Regulator of Endothelial Cell Function and Signaling. J. Biol. Chem.; 2017; 292, pp. 6600-6620. [DOI: https://dx.doi.org/10.1074/jbc.M116.742627] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28235804]
344. Ciribilli, Y.; Singh, P.; Inga, A.; Borlak, J. C-Myc Targeted Regulators of Cell Metabolism in a Transgenic Mouse Model of Papillary Lung Adenocarcinoma. Oncotarget; 2016; 7, pp. 65514-65539. [DOI: https://dx.doi.org/10.18632/oncotarget.11804]
345. Safe, S.; Jin, U.-H.; Hedrick, E.; Reeder, A.; Lee, S.-O. Minireview: Role Of Orphan Nuclear Receptors in Cancer and Potential as Drug Targets. Mol. Endocrinol.; 2014; 28, pp. 157-172. [DOI: https://dx.doi.org/10.1210/me.2013-1291]
346. Safe, S.; Jin, U.-H.; Morpurgo, B.; Abudayyeh, A.; Singh, M.; Tjalkens, R.B. Nuclear Receptor 4A (NR4A) Family - Orphans No More. J. Steroid Biochem. Mol. Biol.; 2016; 157, pp. 48-60. [DOI: https://dx.doi.org/10.1016/j.jsbmb.2015.04.016] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25917081]
347. Beard, J.A.; Tenga, A.; Hills, J.; Hoyer, J.D.; Cherian, M.T.; Wang, Y.-D.; Chen, T. The Orphan Nuclear Receptor NR4A2 Is Part of a P53-MicroRNA-34 Network. Sci. Rep.; 2016; 6, 25108. [DOI: https://dx.doi.org/10.1038/srep25108] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27121375]
348. Zhang, W.; Mao, J.-H.; Zhu, W.; Jain, A.K.; Liu, K.; Brown, J.B.; Karpen, G.H. Centromere and Kinetochore Gene Misexpression Predicts Cancer Patient Survival and Response to Radiotherapy and Chemotherapy. Nat. Commun.; 2016; 7, 12619. [DOI: https://dx.doi.org/10.1038/ncomms12619] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27577169]
349. Rao, C.V.; Farooqui, M.; Zhang, Y.; Kumar, G.; Panneerselvam, J.; Yarla, N.; Asch, A.S.; Yamada, H.Y. Abstract 1199: Identification of Candidate Regulators of Genomic Instability in Human Lung Adenocarcinoma through a New Cross-Species in Silico Analysis. Cancer Res.; 2019; 79, 1199. [DOI: https://dx.doi.org/10.1158/1538-7445.AM2019-1199]
350. Christmann, R.B.; Wooten, A.; Sampaio-Barros, P.; Borges, C.L.; Carvalho, C.R.R.; Kairalla, R.A.; Feghali-Bostwick, C.; Ziemek, J.; Mei, Y.; Goummih, S. et al. MiR-155 in the Progression of Lung Fibrosis in Systemic Sclerosis. Arthritis Res. Ther.; 2016; 18, 155. [DOI: https://dx.doi.org/10.1186/s13075-016-1054-6]
351. Raja, R.; Sahasrabuddhe, N.A.; Radhakrishnan, A.; Syed, N.; Solanki, H.S.; Puttamallesh, V.N.; Balaji, S.A.; Nanjappa, V.; Datta, K.K.; Babu, N. et al. Chronic Exposure to Cigarette Smoke Leads to Activation of P21 (RAC1)-Activated Kinase 6 (PAK6) in Non-Small Cell Lung Cancer Cells. Oncotarget; 2016; 7, pp. 61229-61245. [DOI: https://dx.doi.org/10.18632/oncotarget.11310]
352. Zhang, L.; Wang, H.; Wang, C. Persistence of Smoking Induced Non-small Cell Lung Carcinogenesis by Decreasing ERBB Pathway-related MicroRNA Expression. Thorac. Cancer; 2019; 10, pp. 890-897. [DOI: https://dx.doi.org/10.1111/1759-7714.13020]
353. Li, W.; Huang, K.; Guo, H.; Cui, G.; Zhao, S. Inhibition of Non-Small-Cell Lung Cancer Cell Proliferation by Pbx1. Chin. J. Cancer Res.; 2014; 26, pp. 573-578. [DOI: https://dx.doi.org/10.3978/j.issn.1000-9604.2014.08.21]
354. Mo, M.-L.; Chen, Z.; Zhou, H.-M.; Li, H.; Hirata, T.; Jablons, D.M.; He, B. Detection of E2A-PBX1 Fusion Transcripts in Human Non-Small-Cell Lung Cancer. J. Exp. Clin. Cancer Res. CR; 2013; 32, 29. [DOI: https://dx.doi.org/10.1186/1756-9966-32-29]
355. Wu, X.; Ruan, L.; Yang, Y.; Mei, Q. Analysis of Gene Expression Changes Associated with Human Carcinoma-Associated Fibroblasts in Non-Small Cell Lung Carcinoma. Biol. Res.; 2017; 50, 6. [DOI: https://dx.doi.org/10.1186/s40659-017-0108-9]
356. Bender, A.T.; Beavo, J.A. Cyclic Nucleotide Phosphodiesterases: Molecular Regulation to Clinical Use. Pharmacol. Rev.; 2006; 58, pp. 488-520. [DOI: https://dx.doi.org/10.1124/pr.58.3.5] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16968949]
357. Klutzny, S.; Anurin, A.; Nicke, B.; Regan, J.L.; Lange, M.; Schulze, L.; Parczyk, K.; Steigemann, P. PDE5 Inhibition Eliminates Cancer Stem Cells via Induction of PKA Signaling. Cell Death Dis.; 2018; 9, 192. [DOI: https://dx.doi.org/10.1038/s41419-017-0202-5] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29416006]
358. Wharton, J.; Strange, J.W.; Møller, G.M.O.; Growcott, E.J.; Ren, X.; Franklyn, A.P.; Phillips, S.C.; Wilkins, M.R. Antiproliferative Effects of Phosphodiesterase Type 5 Inhibition in Human Pulmonary Artery Cells. Am. J. Respir. Crit. Care Med.; 2005; 172, pp. 105-113. [DOI: https://dx.doi.org/10.1164/rccm.200411-1587OC] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15817798]
359. Ding, L.; Wang, H.; Lang, W.; Xiao, L. Protein Kinase C-Epsilon Promotes Survival of Lung Cancer Cells by Suppressing Apoptosis through Dysregulation of the Mitochondrial Caspase Pathway. J. Biol. Chem.; 2002; 277, pp. 35305-35313. [DOI: https://dx.doi.org/10.1074/jbc.M201460200]
360. Caino, M.C.; Lopez-Haber, C.; Kissil, J.L.; Kazanietz, M.G. Non-Small Cell Lung Carcinoma Cell Motility, Rac Activation and Metastatic Dissemination Are Mediated by Protein Kinase C Epsilon. PLoS ONE; 2012; 7, e31714. [DOI: https://dx.doi.org/10.1371/journal.pone.0031714]
361. Garg, R.; Cooke, M.; Benavides, F.; Abba, M.C.; Cicchini, M.; Feldser, D.M.; Kazanietz, M.G. PKCε Is Required for KRAS-Driven Lung Tumorigenesis. Cancer Res.; 2020; 80, pp. 5166-5173. [DOI: https://dx.doi.org/10.1158/0008-5472.CAN-20-1300]
362. Baxter, G.; Oto, E.; Daniel-Issakani, S.; Strulovici, B. Constitutive Presence of a Catalytic Fragment of Protein Kinase C Epsilon in a Small Cell Lung Carcinoma Cell Line. J. Biol. Chem.; 1992; 267, pp. 1910-1917. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/1309802][DOI: https://dx.doi.org/10.1016/S0021-9258(18)46033-4]
363. Bae, K.-M.; Wang, H.; Jiang, G.; Chen, M.G.; Lu, L.; Xiao, L. Protein Kinase C Epsilon Is Overexpressed in Primary Human Non-Small Cell Lung Cancers and Functionally Required for Proliferation of Non-Small Cell Lung Cancer Cells in a P21/Cip1-Dependent Manner. Cancer Res.; 2007; 67, pp. 6053-6063. [DOI: https://dx.doi.org/10.1158/0008-5472.CAN-06-4037]
364. Zhang, N.; Su, Y.; Xu, L. Targeting PKCε by MiR-143 Regulates Cell Apoptosis in Lung Cancer. FEBS Lett.; 2013; 587, pp. 3661-3667. [DOI: https://dx.doi.org/10.1016/j.febslet.2013.09.018]
365. Tuomi, S.; Mai, A.; Nevo, J.; Laine, J.O.; Vilkki, V.; Öhman, T.J.; Gahmberg, C.G.; Parker, P.J.; Ivaska, J. PKCɛ Regulation of an A5 Integrin–ZO-1 Complex Controls Lamellae Formation in Migrating Cancer Cells. Sci. Signal.; 2009; 2, ra32. [DOI: https://dx.doi.org/10.1126/scisignal.2000135]
366. Lemjabbar-Alaoui, H.; Sidhu, S.S.; Mengistab, A.; Gallup, M.; Basbaum, C. TACE/ADAM-17 Phosphorylation by PKC-Epsilon Mediates Premalignant Changes in Tobacco Smoke-Exposed Lung Cells. PLoS ONE; 2011; 6, e17489. [DOI: https://dx.doi.org/10.1371/journal.pone.0017489]
367. Kim, C.; Yang, H.; Fukushima, Y.; Saw, P.E.; Lee, J.; Park, J.-S.; Park, I.; Jung, J.; Kataoka, H.; Lee, D. et al. Vascular RhoJ Is an Effective and Selective Target for Tumor Angiogenesis and Vascular Disruption. Cancer Cell; 2014; 25, pp. 102-117. [DOI: https://dx.doi.org/10.1016/j.ccr.2013.12.010]
368. Mullapudi, N.; Ye, B.; Suzuki, M.; Fazzari, M.; Han, W.; Shi, M.K.; Marquardt, G.; Lin, J.; Wang, T.; Keller, S. et al. Genome Wide Methylome Alterations in Lung Cancer. PLoS ONE; 2015; 10, e0143826. [DOI: https://dx.doi.org/10.1371/journal.pone.0143826] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26683690]
369. Gan, T.; Chen, W.; Qin, H.; Huang, S.; Yang, L.; Fang, Y.; Pan, L.; Li, Z.; Chen, G. Clinical Value and Prospective Pathway Signaling of MicroRNA-375 in Lung Adenocarcinoma: A Study Based on the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and Bioinformatics Analysis. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res.; 2017; 23, pp. 2453-2464. [DOI: https://dx.doi.org/10.12659/MSM.901460] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28533502]
370. Bell, S.M.; Schreiner, C.M.; Wert, S.E.; Mucenski, M.L.; Scott, W.J.; Whitsett, J.A. R-Spondin 2 Is Required for Normal Laryngeal-Tracheal, Lung and Limb Morphogenesis. Dev. Camb. Engl.; 2008; 135, pp. 1049-1058. [DOI: https://dx.doi.org/10.1242/dev.013359]
371. Ramsey, J.; Butnor, K.; Peng, Z.; Leclair, T.; van der Velden, J.; Stein, G.; Lian, J.; Kinsey, C.M. Loss of RUNX1 Is Associated with Aggressive Lung Adenocarcinomas. J. Cell. Physiol.; 2018; 233, pp. 3487-3497. [DOI: https://dx.doi.org/10.1002/jcp.26201]
372. Matsuo, A. Abstract 3516: RUNX1 Controls EGFR Signaling Pathway in Non-Small Cell Lung Cancer Cells. Cancer Res.; 2017; 77, 3516. [DOI: https://dx.doi.org/10.1158/1538-7445.AM2017-3516]
373. Ishii, T.; Wakabayashi, R.; Kurosaki, H.; Gemma, A.; Kida, K. Association of Serotonin Transporter Gene Variation with Smoking, Chronic Obstructive Pulmonary Disease, and Its Depressive Symptoms. J. Hum. Genet.; 2011; 56, pp. 41-46. [DOI: https://dx.doi.org/10.1038/jhg.2010.133]
374. Zhu, Q.; Liang, X.; Dai, J.; Guan, X. Prostaglandin Transporter, SLCO2A1, Mediates the Invasion and Apoptosis of Lung Cancer Cells via PI3K/AKT/MTOR Pathway. Int. J. Clin. Exp. Pathol.; 2015; 8, pp. 9175-9181.
375. Lenka, G.; Tsai, M.-H.; Lin, H.-C.; Hsiao, J.-H.; Lee, Y.-C.; Lu, T.-P.; Lee, J.-M.; Hsu, C.-P.; Lai, L.-C.; Chuang, E.Y. Identification of Methylation-Driven, Differentially Expressed STXBP6 as a Novel Biomarker in Lung Adenocarcinoma. Sci. Rep.; 2017; 7, 42573. [DOI: https://dx.doi.org/10.1038/srep42573]
376. Wang, J.; Duan, Y.; Meng, Q.-H.; Gong, R.; Guo, C.; Zhao, Y.; Zhang, Y. Integrated Analysis of DNA Methylation Profiling and Gene Expression Profiling Identifies Novel Markers in Lung Cancer in Xuanwei, China. PLoS ONE; 2018; 13, e0203155. [DOI: https://dx.doi.org/10.1371/journal.pone.0203155] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30286088]
377. de Aberasturi, A.L.; Redrado, M.; Villalba, M.; Larzabal, L.; Pajares, M.J.; Garcia, J.; Evans, S.R.; Garcia-Ros, D.; Bodegas, M.E.; Lopez, L. et al. TMPRSS4 Induces Cancer Stem Cell-like Properties in Lung Cancer Cells and Correlates with ALDH Expression in NSCLC Patients. Cancer Lett.; 2016; 370, pp. 165-176. [DOI: https://dx.doi.org/10.1016/j.canlet.2015.10.012]
378. Chikaishi, Y.; Uramoto, H.; Koyanagi, Y.; Yamada, S.; Yano, S.; Tanaka, F. TMPRSS4 Expression as a Marker of Recurrence in Patients with Lung Cancer. Anticancer Res.; 2016; 36, pp. 121-127. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26722035]
379. Fan, X.; Liang, Y.; Liu, Y.; Bai, Y.; Yang, C.; Xu, S. The Upregulation of TMPRSS4, Partly Ascribed to the Downregulation of MiR-125a-5p, Promotes the Growth of Human Lung Adenocarcinoma via the NF-ΚB Signaling Pathway. Int. J. Oncol.; 2018; 53, pp. 148-158. [DOI: https://dx.doi.org/10.3892/ijo.2018.4396] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29750426]
380. Larzabal, L.; Nguewa, P.A.; Pio, R.; Blanco, D.; Sanchez, B.; Rodríguez, M.J.; Pajares, M.J.; Catena, R.; Montuenga, L.M.; Calvo, A. Overexpression of TMPRSS4 in Non-Small Cell Lung Cancer Is Associated with Poor Prognosis in Patients with Squamous Histology. Br. J. Cancer; 2011; 105, pp. 1608-1614. [DOI: https://dx.doi.org/10.1038/bjc.2011.432] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22067904]
381. Hamamoto, J.; Soejima, K.; Naoki, K.; Yasuda, H.; Hayashi, Y.; Yoda, S.; Nakayama, S.; Satomi, R.; Terai, H.; Ikemura, S. et al. Methylation-Induced Downregulation of TFPI-2 Causes TMPRSS4 Overexpression and Contributes to Oncogenesis in a Subset of Non-Small-Cell Lung Carcinoma. Cancer Sci.; 2015; 106, pp. 34-42. [DOI: https://dx.doi.org/10.1111/cas.12569]
382. Valero-Jiménez, A.; Zúñiga, J.; Cisneros, J.; Becerril, C.; Salgado, A.; Checa, M.; Buendía-Roldán, I.; Mendoza-Milla, C.; Gaxiola, M.; Pardo, A. et al. Transmembrane Protease, Serine 4 (TMPRSS4) Is Upregulated in IPF Lungs and Increases the Fibrotic Response in Bleomycin-Induced Lung Injury. PLoS ONE; 2018; 13, e0192963. [DOI: https://dx.doi.org/10.1371/journal.pone.0192963]
383. Expósito, F.; Villalba, M.; Pajares, M.J.; Redrado, M.; Sainz, C.; Wistuba, I.; Behrens, C.; Redin, E.; Andrea, C.; Cirauquiz, C. et al. P1.03-24 TMPRSS4: A Novel Prognostic Biomarker and Therapeutic Target in NSCLC. J. Thorac. Oncol.; 2018; 13, S521. [DOI: https://dx.doi.org/10.1016/j.jtho.2018.08.705]
384. Link, T.M.; Park, U.; Vonakis, B.M.; Raben, D.M.; Soloski, M.J.; Caterina, M.J. TRPV2 Has a Pivotal Role in Macrophage Particle Binding and Phagocytosis. Nat. Immunol.; 2010; 11, pp. 232-239. [DOI: https://dx.doi.org/10.1038/ni.1842]
385. Hao, J.; Xu, A.; Xie, X.; Hao, J.; Tian, T.; Gao, S.; Xiao, X.; He, D. Elevated Expression of UBE2T in Lung Cancer Tumors and Cell Lines. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med.; 2008; 29, pp. 195-203. [DOI: https://dx.doi.org/10.1159/000148187]
386. Perez-Peña, J.; Corrales-Sánchez, V.; Amir, E.; Pandiella, A.; Ocana, A. Ubiquitin-Conjugating Enzyme E2T (UBE2T) and Denticleless Protein Homolog (DTL) Are Linked to Poor Outcome in Breast and Lung Cancers. Sci. Rep.; 2017; 7, 17530. [DOI: https://dx.doi.org/10.1038/s41598-017-17836-7] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29235520]
387. Liu, J.; Liu, X. UBE2T Silencing Inhibited Non-Small Cell Lung Cancer Cell Proliferation and Invasion by Suppressing the Wnt/β-Catenin Signaling Pathway. Int. J. Clin. Exp. Pathol.; 2017; 10, 9482. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31966822]
388. Madar, S.; Brosh, R.; Buganim, Y.; Ezra, O.; Goldstein, I.; Solomon, H.; Kogan, I.; Goldfinger, N.; Klocker, H.; Rotter, V. Modulated Expression of WFDC1 during Carcinogenesis and Cellular Senescence. Carcinogenesis; 2009; 30, pp. 20-27. [DOI: https://dx.doi.org/10.1093/carcin/bgn232] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18842679]
389. Larsen, J.E.; Nathan, V.; Osborne, J.K.; Farrow, R.K.; Deb, D.; Sullivan, J.P.; Dospoy, P.D.; Augustyn, A.; Hight, S.K.; Sato, M. et al. ZEB1 Drives Epithelial-to-Mesenchymal Transition in Lung Cancer. J. Clin. Investig.; 2016; 126, pp. 3219-3235. [DOI: https://dx.doi.org/10.1172/JCI76725]
390. Zhang, T.; Guo, L.; Creighton, C.J.; Lu, Q.; Gibbons, D.L.; Yi, E.S.; Deng, B.; Molina, J.R.; Sun, Z.; Yang, P. et al. A Genetic Cell Context-Dependent Role for ZEB1 in Lung Cancer. Nat. Commun.; 2016; 7, 12231. [DOI: https://dx.doi.org/10.1038/ncomms12231] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27456471]
391. Yochum, Z.A.; Socinski, M.A.; Burns, T.F. Paradoxical Functions of ZEB1 in EGFR-Mutant Lung Cancer: Tumor Suppressor and Driver of Therapeutic Resistance. J. Thorac. Dis.; 2016; 8, pp. E1528-E1531. [DOI: https://dx.doi.org/10.21037/jtd.2016.11.59] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28066651]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Simple Summary
An adequate bioinformatic pipeline is a valuable tool for understanding cancer mechanisms and identifying transcriptomic biomarkers of cancer and specific to lung cancer. The bioinformatic pipeline was applied to analyze multiple transcriptomic studies and to identify an important group of winning transcription factors coexpressed in gene networks of lung cancer, breast cancer and leukemia, capable of forming coregulatory complexes associated with the regulation of genes involved in tumorigenic processes related to the acquisition of the hallmarks of cancer, as well as lung cancer patients survival. The establishment of a general and specific transcriptional regulatory network is essential to develop key molecular tools for prevention, early diagnosis, and treatment aimed at precision personalized medicine of cancer.
AbstractThe bioinformatic pipeline previously developed in our research laboratory is used to identify potential general and specific deregulated tumor genes and transcription factors related to the establishment and progression of tumoral diseases, now comparing lung cancer with other two types of cancer. Twenty microarray datasets were selected and analyzed separately to identify hub differentiated expressed genes and compared to identify all the deregulated genes and transcription factors in common between the three types of cancer and those unique to lung cancer. The winning DEGs analysis allowed to identify an important number of TFs deregulated in the majority of microarray datasets, which can become key biomarkers of general tumors and specific to lung cancer. A coexpression network was constructed for every dataset with all deregulated genes associated with lung cancer, according to DAVID’s tool enrichment analysis, and transcription factors capable of regulating them, according to oPOSSUM´s tool. Several genes and transcription factors are coexpressed in the networks, suggesting that they could be related to the establishment or progression of the tumoral pathology in any tissue and specifically in the lung. The comparison of the coexpression networks of lung cancer and other types of cancer allowed the identification of common connectivity patterns with deregulated genes and transcription factors correlated to important tumoral processes and signaling pathways that have not been studied yet to experimentally validate their role in lung cancer. The Kaplan–Meier estimator determined the association of thirteen deregulated top winning transcription factors with the survival of lung cancer patients. The coregulatory analysis identified two top winning transcription factors networks related to the regulatory control of gene expression in lung and breast cancer. Our transcriptomic analysis suggests that cancer has an important coregulatory network of transcription factors related to the acquisition of the hallmarks of cancer. Moreover, lung cancer has a group of genes and transcription factors unique to pulmonary tissue that are coexpressed during tumorigenesis and must be studied experimentally to fully understand their role in the pathogenesis within its very complex transcriptomic scenario. Therefore, the downstream bioinformatic analysis developed was able to identify a coregulatory metafirm of cancer in general and specific to lung cancer taking into account the great heterogeneity of the tumoral process at cellular and population levels.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details






1 Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 11001, Colombia;
2 Departamento de Estadística, Universidad Nacional de Colombia, Bogotá 11001, Colombia;
3 Departamento de Medicina Interna, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá 110211, Colombia;
4 Institute of Biomedical Sciences, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370134, Chile;
5 Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá 110211, Colombia