Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, we consider a multiple reconfigurable intelligent surface (RIS)-assisted system using positioning information (PI) to explore the potential of Doppler effect mitigation and spectral efficiency (SE) enhancement in high-speed communications (HSC) in the presence of hardware impairments (HWI). In particular, we first present a general multi-RIS-assisted system model for HSC with HWI. Then, based on PI, different phase shift optimization strategies are designed and compared for maximizing SE, eliminating Doppler spread, and maintaining a very low delay spread. Moreover, we compare the performance of different numbers of RISs with HWI in terms of SE and delay spread. Finally, we extend our channel model from line-of-sight to the Rician channel to demonstrate the effectiveness and robustness of our proposed scheme. Numerical results reveal that the HWI of RISs increases the delay spread, but has no impact on Doppler shift and spread. Additionally, the multiple RIS system not only suffers a more severe delay spread, but is limited in SE due to the HWI. When the number of RISs increases from 2 to 16, the range of average spectral efficiency and delay spread are from 4 to 4.6 Bit/s/Hz and from 0.7 μs to 2.5 μs, respectively. In contrast to conventional RIS-assisted systems that require channel estimation, the proposed PI-based RIS system offers simplicity without compromising effectiveness and robustness in both SE enhancement and Doppler mitigation.

Details

Title
Positioning Information Based High-Speed Communications with Multiple RISs: Doppler Mitigation and Hardware Impairments
Author
Wang, Ke  VIAFID ORCID Logo  ; Chan-Tong, Lam  VIAFID ORCID Logo  ; Ng, Benjamin K  VIAFID ORCID Logo 
First page
7076
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2693925752
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.