Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study proposes a generally applicable improvement strategy for metaheuristic algorithms, improving the algorithm’s accuracy and local convergence in finite element (FE) model updating. Based on the idea of “survival of the fittest” in biological evolution, the improvement strategy introduces random crossover and mutation operators into metaheuristic algorithms to improve the accuracy and stability of the solution. The effectiveness of the improvement strategy with three typical metaheuristic algorithms was comprehensively tested by benchmark functions and numerical simulations of a space truss structure. Meanwhile, the initial FE model of a railway hybrid girder cable-stayed bridge was updated to examine the effect of the improved metaheuristic algorithm within the FE model, updating for complex engineering structures. The results show that the accuracy and stability of the improved metaheuristic algorithm were improved by this process. After the initial FE model of the hybrid girder cable-stayed bridge was updated, the calculated frequencies and displacements were closer to the measured values, better representing the actual structure, and showing that this process can be used for baseline FE models of bridges.

Details

Title
Improved Metaheuristic Algorithm Based Finite Element Model Updating of a Hybrid Girder Cable-Stayed Railway Bridge
Author
Qin, Shiqiang  VIAFID ORCID Logo  ; Yuan, Yonggang; Gan, Yaowei; Wang, Qiuping
First page
958
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2693956637
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.